We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Whole-Genome Sequencing Aids Rare Disease Diagnosis

By LabMedica International staff writers
Posted on 01 Apr 2021
Print article
Image: The MassARRAY Dx Analyzer is a benchtop multiplex genetic analyzer that simplifies the complex clinical genetics environment with easy-to-interpret data, flexible biomarker detection and robust performance (Photo courtesy of Agena Biosciences)
Image: The MassARRAY Dx Analyzer is a benchtop multiplex genetic analyzer that simplifies the complex clinical genetics environment with easy-to-interpret data, flexible biomarker detection and robust performance (Photo courtesy of Agena Biosciences)
Diagnostics of genetic diseases are currently being revolutionized, due to breakthroughs in sequencing technology and data analysis. The potential to transform clinical medicine using genomics is high, especially within the realm of rare diseases.

Rare diseases constitute a large and heterogeneous group of diagnoses that includes more than 8,000 distinct conditions of which the vast majority have a genetic basis. Each individual disease is rare, but when considered as a group, rare diseases are common with a total prevalence of approximately 6% to 8%.

Medical Molecular Scientists at the Karolinska Institutet (Stockholm, Sweden) and their colleagues sequenced the genomes of 3,219 patients in a five year program. Clinical whole-genome sequencing (WGS) was gradually implemented at the Genomic Medicine Center Karolinska-Rare Disease (GMCK-RD) over the course of five years. At first sequencing was performed on the HiSeq X Ten, but shifted to the NovaSeq 6000 (Illumina, San Diego, CA, USA) in December 2018.

Typically, samples were analyzed in a step-wise fashion, in which they were first analyzed for variants associated with the patient's suspected disease, sometimes with very large gene panels of nearly 4,000 genes, before being escalated for additional analysis or whole-genome analysis if no diagnosis was made. To ensure there are no sample mix ups during the WGS processing, an aliquot of the extracted DNA was genotyped for 51 SNPs using MassARRAY technology (Agena Biosciences, San Diego, CA, USA).

The scientists uncovered variants in 754 different disease genes, with the most commonly affected genes being COL2A1 and FKRP. A number of variants were also recurrent, some of which were known founder mutations, such as Leu27Ile in FKRP, which was homozygous in 12 people with limb girdle muscle dystrophy, and homozygous expansions in the RFC1 gene among individuals with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome. Other patients, though, had variants known to arise recurrently as de novo mutations, such as one affecting the PRRT2 gene that leads to seizures.

For some patients having a molecular diagnosis can change their treatment. As the team noted, patients with acute-onset inborn errors of metabolism are often treated with glucose infusion, but for patients with pyruvate dehydrogenase deficiency, this can be harmful. Such patients are instead treated with a ketogenic diet. The scientists generated molecular diagnoses for 1,287 patients, or 40%, with a median turnaround time of 13 days.

Anna Wedell, MD, PhD, a Professor of Molecular Medicine and Surgery and a senior co-author of the study, said, “Most patients would not have been subjected to genetic investigations with conventional approaches. We have integrated WGS deeply into the clinic, making genomics available in completely new clinical scenarios including acute medical situations across a broad range of disease groups.” The study was published on March 17, 2021 in the journal Genome Medicine.

Related Links:
Karolinska Institutet
Illumina
Agena Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.