We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Analysis of Cell-free DNA in the Blood May Replace Examination of Biopsy Specimens for Disease Diagnosis

By LabMedica International staff writers
Posted on 16 Feb 2021
A recent paper described a blood-based liquid biopsy method for detection of a wide variety of diseases including several types of cancer.

Cell-free DNA (cfDNA) in human plasma provides access to molecular information about the pathological processes in the organs or tumors from which it originates. More...
These DNA fragments are derived from fragmented chromatin in dying cells and retain some of the cell-of-origin histone modifications.

Investigators at The Hebrew University of Jerusalem (Israel) recently presented an advanced technique for exploiting cfDNA to replace the biopsy specimens frequently used for disease diagnosis. The investigators utilized chromatin immunoprecipitation (ChIP) of cell-free nucleosomes carrying active chromatin modifications. In the current study, this step was followed by sequencing (cfChIP-seq) of 268 human samples.

A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome, which is the fundamental subunit of chromatin consists of a segment of DNA wound around eight histone proteins. Each nucleosome is composed of a little less than two turns of DNA wrapped around a set of eight histone proteins (histone octamer). Each histone octamer is composed of two copies each of the histone proteins H2A, H2B, H3, and H4. Each human cell contains about 30 million nucleosomes.

ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated proteins. ChIP-seq is primarily used to determine how transcription factors and other chromatin-associated proteins influence phenotype-affecting mechanisms. Determining how proteins interact with DNA to regulate gene expression is essential for fully understanding many biological processes and disease states. This epigenetic information is complementary to genotype and expression analysis.

Use of the cfChIP-seq approach in the current study revealed that in healthy donors bone marrow megakaryocytes, but not erythroblasts, were the major contributors to the cfDNA pool. In patients with a range of liver diseases, the method identified pathology-related changes in hepatocyte transcriptional programs. In patients with metastatic colorectal carcinoma, it detected clinically relevant and patient-specific information, including transcriptionally active human epidermal growth factor receptor 2 (HER2) amplifications.

Senior author Dr. Nir Friedman, professor of computer science and biology at The Hebrew University of Jerusalem, said, "The cfChIP-seq approach relies on analysis of epigenetic information within the cell, a method which has been increasingly refined in recent years. As a result of these scientific advancements, we understood that if this information is maintained within the DNA structure in the blood, we could use that data to determine the tissue source of dead cells and the genes that were active in those very cells. Based on those findings, we can uncover key details about the patient's health. We are able to better understand why the cells died, whether it is an infection or cancer and based on that be better positioned to determine how the disease is developing."

The method was described in the January 21, 2021, online edition of the journal Nature Biotechnology.

Related Links:
The Hebrew University of Jerusalem


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
PlGF Test
Quidel Triage PlGF Test
New
Gold Member
Automated Cell Culture Chemistry Analyzer
BioProfile FLEX2 Basic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.