Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sensitive Separation Device Enables Diagnostic Analysis of Cancer Exosomes

By LabMedica International staff writers
Posted on 15 Jun 2020
A novel separation technique that combines isotachophoresis with paper-based lateral flow chromatography was used to isolate and characterize cancer exosomes and exosome biomarkers in serum samples.

Exosomes derived from cancer cells/tissues have great potential for early cancer diagnostic use, but their clinical potential has not been fully explored because of a lack of cost-effective multiplex approaches capable of effectively isolating and identifying specific exosome populations and analyzing their content biomarkers. More...


Exosomes are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. The reported diameter of exosomes is between 30 and 100 nanometers, which is larger than low-density lipoproteins but much smaller than red blood cells. Exosomes, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane. Exosomes have specialized functions and play a key role in coagulation, intercellular signaling, and waste management.

Investigators at Washington State University (Pullman, USA) sought to overcome the technical barriers hindering the diagnostic applications of cancer exosomes by developing a paper-based isotachophoresis (ITP) technology capable of 1) rapid isolation and identification of exosomes from both malignant and healthy cells and 2) multiplex detection of selected exosomal protein biomarkers of the target exosomes.

While generally not achieving the resolution of other forms of electrophoresis, ITP has been successfully employed for difficult samples, such as very small peptides, not amenable to traditional techniques. ITP has also shown great promise for the analysis of complex mixtures of molecules of different classes. Although, technically, isotachophoresis separates samples by electrophoretic mobility, the layers of sample molecules move at the same speed.

The novel technology described in the current study combined the focusing power of ITP with the multiplex capability of paper-based lateral flow to achieve on-board separation of target exosomes from large extracellular vesicles, followed by electrokinetic enrichment of the targets. This created an ultrasensitive platform for comprehensive exosome analysis.

For a proof of concept, the technology platform was tested with human serum samples spiked with exosomes derived from healthy human serum and a prostate cancer cell line. Results revealed that under anionic ITP conditions, the device showed superior performance in simultaneous detection of the cancer exosomes and normal exosomes with an observed limit of detection more than 30-fold better than that of enhanced ELISA. In a subsequent step, the technology was shown to be capable of the rapid profiling of a selected protein biomarker panel associated with the target exosomes.

"This has the potential to become a technique capable of concentrating samples by orders of magnitude in minutes," said senior author Dr Wenji Dong, associate professor of chemical engineering and bioengineering at Washington State University. "Exosomes provide a unique opportunity as a cancer marker."

The exosome concentration device was described in the May 15, 2020, online edition of the journal Biosensors and Bioelectronics.

Related Links:
Washington State University


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
Alcohol Testing Device
Dräger Alcotest 7000
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.