Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Sensitive Separation Device Enables Diagnostic Analysis of Cancer Exosomes

By LabMedica International staff writers
Posted on 15 Jun 2020
A novel separation technique that combines isotachophoresis with paper-based lateral flow chromatography was used to isolate and characterize cancer exosomes and exosome biomarkers in serum samples.

Exosomes derived from cancer cells/tissues have great potential for early cancer diagnostic use, but their clinical potential has not been fully explored because of a lack of cost-effective multiplex approaches capable of effectively isolating and identifying specific exosome populations and analyzing their content biomarkers. More...


Exosomes are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. The reported diameter of exosomes is between 30 and 100 nanometers, which is larger than low-density lipoproteins but much smaller than red blood cells. Exosomes, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane. Exosomes have specialized functions and play a key role in coagulation, intercellular signaling, and waste management.

Investigators at Washington State University (Pullman, USA) sought to overcome the technical barriers hindering the diagnostic applications of cancer exosomes by developing a paper-based isotachophoresis (ITP) technology capable of 1) rapid isolation and identification of exosomes from both malignant and healthy cells and 2) multiplex detection of selected exosomal protein biomarkers of the target exosomes.

While generally not achieving the resolution of other forms of electrophoresis, ITP has been successfully employed for difficult samples, such as very small peptides, not amenable to traditional techniques. ITP has also shown great promise for the analysis of complex mixtures of molecules of different classes. Although, technically, isotachophoresis separates samples by electrophoretic mobility, the layers of sample molecules move at the same speed.

The novel technology described in the current study combined the focusing power of ITP with the multiplex capability of paper-based lateral flow to achieve on-board separation of target exosomes from large extracellular vesicles, followed by electrokinetic enrichment of the targets. This created an ultrasensitive platform for comprehensive exosome analysis.

For a proof of concept, the technology platform was tested with human serum samples spiked with exosomes derived from healthy human serum and a prostate cancer cell line. Results revealed that under anionic ITP conditions, the device showed superior performance in simultaneous detection of the cancer exosomes and normal exosomes with an observed limit of detection more than 30-fold better than that of enhanced ELISA. In a subsequent step, the technology was shown to be capable of the rapid profiling of a selected protein biomarker panel associated with the target exosomes.

"This has the potential to become a technique capable of concentrating samples by orders of magnitude in minutes," said senior author Dr Wenji Dong, associate professor of chemical engineering and bioengineering at Washington State University. "Exosomes provide a unique opportunity as a cancer marker."

The exosome concentration device was described in the May 15, 2020, online edition of the journal Biosensors and Bioelectronics.

Related Links:
Washington State University


Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Drug Test Kit
DrugCheck 3000
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.