We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Jan 2021 - 27 Jan 2021
Virtual Venue
24 Feb 2021 - 28 Feb 2021
Virtual Venue

Proteomic Analysis of Urinary Extracellular Vesicles for the Diagnosis of Prostate Cancer

By LabMedica International staff writers
Posted on 30 Apr 2020
Print article
Image: Electron microscope image of urinary extracellular vesicles (EVs) (Photo courtesy of Pekka Rappu, University of Turku).
Image: Electron microscope image of urinary extracellular vesicles (EVs) (Photo courtesy of Pekka Rappu, University of Turku).
A new method for diagnosis of prostate cancer relies on advanced proteomics-based analysis of extracellular vesicles isolated from urine samples.

Extracellular vesicles (EVs) are cell-derived vesicles that are present in many and perhaps all biological fluids, including blood, urine, and cultured medium of cell cultures. The vesicles, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane.

EVs are increasingly being recognized as important vehicles of communication between cells and as promising diagnostic and prognostic biomarkers in cancer. Despite the huge clinical potential, the wide variety of methods for separating EVs from biofluids, which provide material of highly variable purity, and the lack of knowledge regarding methodological reproducibility have impeded the entry of EVs into the clinical arena.

In an effort to increase the usefulness of EVs, investigators at Ghent University (Belgium) and colleagues at the University of Turku (Finland) used mass spectrometry-based proteomics to analyze EVs that had been separated and purified from urine by a novel procedure. This density-based fractionation of urine samples obtained from men with benign and malignant prostate disease by bottom-up Optiprep (the iodine-containing non-ionic radiocontrast agent iodixanol) density gradient centrifugation separated EVs and soluble proteins with high specificity and repeatability.

The investigators reported that differential quantitative proteomic analysis of EV-enriched and protein-enriched urine fractions identified unique and biologically and clinically relevant proteomes in urinary EVs. In addition, by profiling matched prostate cancer tissue-derived EVs and urinary EVs, they demonstrated that the urinary EV proteome was a reflection of that of EVs derived from the tissue of origin.

“Detecting and examining these vesicles in urine has an enormous potential for developing new tests for early detection of urological cancers. However, research related to this is still in its infancy,” said first author Bert Dhondt, a researcher in the laboratory for experimental cancer research at Ghent University. “In the future, the results of the study can aid patients with urological cancers through faster diagnosis and timely treatment.”

The proteomic analysis of EVs in the urine of prostate cancer patients was described in the March 11, 2020, online edition of Journal of Extracellular Vesicles.

Related Links:
Ghent University
University of Turku

Print article



view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.