We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Large Number of Genes Linked to Risk of Developing Autism Spectrum Disorder

By LabMedica International staff writers
Posted on 03 Feb 2020
Print article
Illustration
Illustration
A large exome sequencing study of autism spectrum disorder identified 102 genes associated with risk for autism.

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental mental disorders including autism and Asperger syndrome. Individuals “on the spectrum” often experience difficulties with social communication and interaction, and they often display restricted, repetitive patterns of behavior, interests, or activities.

Symptoms of ASD are typically recognized between one and two years of age. Long-term problems may include difficulties in performing daily tasks, creating and keeping relationships, and maintaining a job. ASD is usually diagnosed by subjective observation of clinical symptoms, and no reliable, practical, and objective markers of prognosis currently exist. Hundreds of genes have been implicated in ASD, but the mechanisms through which they contribute to the disorder have not been well defined.

To better understand the genetics that underpin ASD, investigators from more than 50 institutions collected and analyzed 35,584 participant samples, including 11,986 from individuals with ASD.

Using an enhanced analytical framework to integrate de novo and case-control rare variation, the investigators identified 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 showed higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 showed higher frequencies in individuals ascertained to have ASD.

Expressed early in brain development, most risk genes had roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fell within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes was enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.

"This is a landmark study, both for its size and for the large international collaborative effort it required. With these identified genes we can begin to understand what brain changes underlie ASD and begin to consider novel treatment approaches," said senior author Dr. Joseph D. Buxbaum, professor of psychiatry, neuroscience, and genetics and genomic sciences at the Mount Sinai School of Medicine (New York, NY, USA).

"Through our genetic analyses, we discovered that it is not just one major class of cells implicated in autism, but rather that many disruptions in brain development and in neuronal function can lead to autism," said Dr. Buxbaum. "It is critically important that families of children with and without autism participate in genetic studies because genetic discoveries are the primary means to understanding the molecular, cellular, and systems-level underpinnings of autism. We now have specific, powerful tools that help us understand those underpinnings, and new drugs will be developed based on our newfound understanding of the molecular bases of autism."

The ASD genetics study was published in the January 23, 2020 online edition of the journal Cell.

Related Links:
Mount Sinai School of Medicine

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Unstirred Waterbath
HumAqua 5

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.