We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Genome-Wide Association Leads to Heart Failure Risk Loci

By LabMedica International staff writers
Posted on 23 Jan 2020
Print article
Image: Genome-wide association and Mendelian randomization analysis provide insights into the pathogenesis of heart failure (Photo courtesy of WebMD).
Image: Genome-wide association and Mendelian randomization analysis provide insights into the pathogenesis of heart failure (Photo courtesy of WebMD).
Heart failure (HF) affects more than 30 million individuals worldwide and its prevalence is rising. HF-associated morbidity and mortality remain high despite therapeutic advances, with 5-year survival averaging around 50%.

HF is a clinical syndrome defined by fluid congestion and exercise intolerance due to cardiac dysfunction. HF results typically from myocardial disease with impairment of left ventricular (LV) function manifesting with either reduced or preserved ejection fraction.

An international team of scientists led by the University College London (London, UK) collected data for almost one million individuals with or without heart failure, focusing in on 12 variants at 11 loci that coincided with the heart failure cases. They also attempted to tease out variants associated with underlying heart failure causes, from atrial fibrillation to coronary artery disease, which highlighted risk loci in and around genes from pathways contributing to cardiac development and other processes.

For the meta-analysis, the team considered genotyping profiles generated with high-density arrays and imputation in 47,309 individuals of European descent with heart failure and 930,014 without, enrolled through more than two dozen prior analyses by members of the "Heart Failure Molecular Epidemiology for Therapeutic Targets" consortium. Based on data spanning more than 8.2 million common and less frequent variants, the team incorporated tissue-specific gene expression and other data to take a look at the potential regulatory and functional effects of these apparent risk SNPs, along with their pleiotropic effects.

The team reported that functional analysis of non-coronary artery disease (CAD)-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomization analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension.

The authors concluded that they had identified a modest number of genetic associations for HF compared to other cardiovascular disease genome-wide association (GWAS) of comparable sample size, such as for atrial fibrillation (AF), suggesting that an important component of HF heritability may be more attributable to specific disease subtypes than components of a final common pathway. The study was published on January 9, 2020 in the journal Nature Communications.

Related Links:
University College London

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.