We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Large GWAS Study Finds DNA Variants Linked to Risk of Developing Breast Cancer

By LabMedica International staff writers
Posted on 13 Jan 2020
A large multinational study identified more than 350 DNA variants associated with the more than 150 regions of the genome known to be linked to the risk for developing breast cancer.

Investigators at more than 450 departments and institutions worldwide, including the University of Cambridge (United Kingdom) and the Wellcome Sanger Institute (Hinxton, United Kingdom), collaborated to compare the DNA of 110,000 breast cancer patients against that of some 90,000 healthy controls.

Previous genome-wide association studies (GWAS), which compared the DNA of patients against that of healthy controls, found around 150 regions of the genome that clearly affected breast cancer risk. More...
The use of advanced gene mapping techniques in the current study enabled investigators to identify 352 risk variants within these regions. So far, it is not yet clear how many genes these variants target, but the investigators have identified 191 genes with reasonable confidence.

In the majority of cases, the variants affected gene expression, how active a particular gene was and how much of a particular protein it created, rather than altering the type of protein coded by the gene. Of the newly-discovered genetic variants, about a third predispose women towards developing hormone-responsive breast cancer, the type of disease found in 80% of breast cancer patients. These tumors respond to hormonal treatments such as tamoxifen. In contrast, 15% of the genetic variants predispose women to the rarer estrogen-receptor-negative type of breast cancer.

"We know from previous studies that variants across our DNA contribute towards breast cancer risk, but only rarely have scientists have been able to identify exactly which genes are involved," said first author Dr. Laura Fachal researcher in human genetics at the Wellcome Sanger Institute. "We need this information as it gives us a better clue to what is driving the disease and hence how we might treat or even prevent it."

"This incredible haul of newly-discovered breast cancer genes provides us with many more genes to work on, most of which have not been studied before," said senior author Dr. Alison Dunning, reader in molecular cancer genetics at the University of Cambridge. "It will help us build up a much more detailed picture of how breast cancer arises and develops. But the sheer number of genes now known to play a role emphasizes how complex the disease is."

The breast cancer genome-wide association study was published in the January 7, 2020, online edition of the journal Nature Genetics

Related Links:
University of Cambridge
Wellcome Sanger Institute



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Noul’s AI-based cervical cancer diagnostic solution, miLab CER (Photo courtesy of Noul)

AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America

Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.