We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Large GWAS Study Finds DNA Variants Linked to Risk of Developing Breast Cancer

By LabMedica International staff writers
Posted on 13 Jan 2020
A large multinational study identified more than 350 DNA variants associated with the more than 150 regions of the genome known to be linked to the risk for developing breast cancer.

Investigators at more than 450 departments and institutions worldwide, including the University of Cambridge (United Kingdom) and the Wellcome Sanger Institute (Hinxton, United Kingdom), collaborated to compare the DNA of 110,000 breast cancer patients against that of some 90,000 healthy controls.

Previous genome-wide association studies (GWAS), which compared the DNA of patients against that of healthy controls, found around 150 regions of the genome that clearly affected breast cancer risk. More...
The use of advanced gene mapping techniques in the current study enabled investigators to identify 352 risk variants within these regions. So far, it is not yet clear how many genes these variants target, but the investigators have identified 191 genes with reasonable confidence.

In the majority of cases, the variants affected gene expression, how active a particular gene was and how much of a particular protein it created, rather than altering the type of protein coded by the gene. Of the newly-discovered genetic variants, about a third predispose women towards developing hormone-responsive breast cancer, the type of disease found in 80% of breast cancer patients. These tumors respond to hormonal treatments such as tamoxifen. In contrast, 15% of the genetic variants predispose women to the rarer estrogen-receptor-negative type of breast cancer.

"We know from previous studies that variants across our DNA contribute towards breast cancer risk, but only rarely have scientists have been able to identify exactly which genes are involved," said first author Dr. Laura Fachal researcher in human genetics at the Wellcome Sanger Institute. "We need this information as it gives us a better clue to what is driving the disease and hence how we might treat or even prevent it."

"This incredible haul of newly-discovered breast cancer genes provides us with many more genes to work on, most of which have not been studied before," said senior author Dr. Alison Dunning, reader in molecular cancer genetics at the University of Cambridge. "It will help us build up a much more detailed picture of how breast cancer arises and develops. But the sheer number of genes now known to play a role emphasizes how complex the disease is."

The breast cancer genome-wide association study was published in the January 7, 2020, online edition of the journal Nature Genetics

Related Links:
University of Cambridge
Wellcome Sanger Institute



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
New
Gel Cards
DG Gel Cards
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.