We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Breath Analysis Identifies Cancer Patients Likely to Benefit from Immunotherapy

By LabMedica International staff writers
Posted on 22 Sep 2019
An “electronic nose” analytical device has been developed that can determine the likelihood of a cancer patient to respond successfully to immunotherapy.

Immune checkpoint inhibitors such as nivolumab and pembrolizumab have improved the survival outcome of advanced non-small-cell lung cancer (NSCLC) patients. More...
However, most patients do not benefit from this treatment. Therefore, biomarkers are needed that can accurately predict the patient’s response.

Investigators at the Radboud University Medical Centre (Nijmegen, The Netherlands) and their collaborators at other institutions hypothesized that molecular profiling of exhaled air may capture the inflammatory milieu related to the individual responsiveness to anti-programmed death ligand 1 (PD-1) therapy. The current study aimed to determine the accuracy of exhaled breath analysis for assessing nonresponders versus responders to anti-PD-1 therapy in NSCLC patients.

The electronic nose (eNose) device comprised a metal oxide semiconductor electronic sensor positioned at the rear end of a pneumotachograph. A pneumotachograph is a type of respirometer that is used to assess pulmonary function. This instrument can measure the mechanical function of lungs, chest wall, and respiratory muscles by recording volume, flow, and pressure changes during expiratory or inspiratory events. The eNose sytem used for this study was produced by the biotechnology company Breathomix (Reeuwijk, The Netherlands).

The purpose of the eNose was to detect volatile organic compounds (VOCs), which are present in about 1% of exhaled breath. The investigators speculated that the mix of VOCs in the breath of patients with advanced NSCLC might indicate whether or not the patient would respond to anti-PD1 therapy. The measurement took less than a minute, and the results were compared to an online database where machine-learning algorithms immediately identified whether or not the patient was likely to respond to anti-PD1 therapy.

For the study, the investigators worked with 143 patients with advanced NSCLC. The eNose device was used to establish the breath profiles of the patients two weeks before they began treatment with nivolumab or pembrolizumab. After three months the investigators used standard criteria (Response Evaluation Criteria of Solid Tumors, RECIST) to assess whether the patients were responding to the treatment nor not. Results from the first 92 patients (who started treatment between March 2016 and February 2017) were validated by the results from the remaining 51 patients (who started treatment after April 2017).

Results revealed that eNose analysis of the breath of lung cancer patients could identify with 85% accuracy those who would or would not respond to immunotherapeutic treatment. This finding could potentially prevent the application of ineffective treatment for patients identified as probable nonresponders.

Senior author Dr. Michel van den Heuvel, professor of thoracic oncology at the Radboud University Medical Centre, said, "The introduction of immunotherapy has dramatically improved the treatment of advanced stage non-small cell lung cancer but unfortunately it is only effective in a subset of patients, which was about 20% when we started the study. Currently, there is no test available that can accurately predict who will benefit from this treatment, apart from PD-L1 testing by immuno-histochemistry. This is today's biomarker of choice, despite its analytic and predictive limitations, when making clinical decisions about whether or not to treat a patient with immunotherapy."

"We are convinced that this study merely scratches the surface," said Dr. van den Heuvel. "It represents the first introduction of modern precision medicine, namely that molecular fingerprints can be easily obtained and quickly analyzed on the spot. This truly offers new possibilities for the individual patient and the doctor. The power of this eNose system is that it has been properly validated, both technically and clinically, which is essential. We believe that analysis of exhaled breath is going to become an important diagnostic tool and will guide future treatment in oncology as well as in many other diseases."

The study was published in the September 17, 2019, online edition of the journal Annals of Oncology.

Related Links:
Radboud University Medical Centre
Breathomix


New
Gold Member
Hybrid Pipette
SWITCH
Portable Electronic Pipette
Mini 96
Human Estradiol Assay
Human Estradiol CLIA Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.