We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Fusion Genes Diagnosis Uses Targeted RNA Sequencing

By LabMedica International staff writers
Posted on 10 Apr 2019
Chromosomal rearrangements that juxtapose two different genes together can form a fusion gene. More...
Fusion genes play a causal role in tumorigenesis, accounting for ~20% of human cancer morbidity. However, the prevalence of fusion genes varies widely across different cancers, and many fusion genes are specific to certain cancer sub-types.

Precise fusion gene diagnosis can also inform subsequent therapeutic treatment, with several drugs having been successfully developed to inhibit fusion genes. Fusion gene diagnosis can also predict prognosis, patient survival and treatment response. Fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (RT-PCR) methods have been predominantly used for fusion gene diagnosis.

Scientists at the Garvan Institute of Medical Research (Sydney, Australia) and their colleagues established that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimizing laboratory and bioinformatic variables using spike-in standards and cell lines. Next, they analyzed a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. All libraries were sequenced on an Illumina HiSeq 2500 v4.0 platform.

The team tested their new method using clinical cancer patient samples, including samples from the Molecular Screening and Therapeutics (MoST) clinical trials, and discovered that their RNA analysis not only more accurately detected fusion genes previously identified with FISH analyses, but that it identified 20% more fusion genes that the FISH analyses missed.

Erin Heyer, PhD, the first author of the study, said, “The approach we've taken in our study is to wipe away the information about where the cancer is found, we take a broad view and just look at genes that are known to be involved in fusions across all cancer subtypes.” The study was published on March 27, 2019, in the journal Nature Communications.

Related Links:
Garvan Institute of Medical Research


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Homocysteine Quality Control
Liquichek Homocysteine Control
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.