We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Pneumonia Diagnosed by Nanopore Sequencing of Sputum

By LabMedica International staff writers
Posted on 04 Oct 2018
Pathogen identification in patients with community-acquired pneumonia primarily relies on culture-based techniques. More...
Sequencing-based approaches for pathogen identification are being applied to pneumonia patients.

Haemophilus influenzae, a type of bacteria, can cause many different kinds of infections. These infections range from mild ear infections to severe diseases, like bloodstream infections. H. influenzae is an opportunistic pathogen of the respiratory tract that becomes pathogenic only when other risk factors are present.

Scientists at Seoul National University Hospital (Seoul, South Korea) and their colleagues used deep sequencing of the 16S rRNA gene from sputum to identify H. influenza in a patient with community-acquired pneumonia. They extracted genomic DNA (Genomic DNA Mini Kit from sputum obtained by oropharyngeal suction after a single empiric administration of an antimicrobial drug (cefuroxime, 500 mg). They generated the sequencing libraries using a rapid 16S amplicon sequencing kit.

The team retrospectively performed 16S amplicon sequencing with MinION, a nanopore sequencer, that is gaining attention in metagenomics studies because of its capability for long-read sequencing and real-time analysis, along with its small size. They identified the pneumonia pathogen in this patient by deep sequencing of 16S amplicons from sputum using MinION. The reads aligned to H. influenzae were >100-fold more abundant than reads aligned with other commensal bacteria, reflecting the significant proliferation of H. influenzae in the patient’s respiratory tract.

The authors concluded that with the MinION sequencer, generated reads can be analyzed in real time, which makes this approach more promising. Tentative point-of-care diagnosis by nanopore 16S sequencing and confirmation of the result by standard culture methods would be a feasible approach. They performed sequencing for five hours and the subgroup analyses of reads generated for the first hour and for the first 10 minutes produced similar results, indicating that a relatively short sequencing time would be sufficient for pathogen identification. They estimated that the turnaround time for MinION 16S sequencing can be reduced to less than eight hours. The study was published in the October 2018 issue of the journal Emerging Infectious Diseases.

Related Links:
Seoul National University Hospital


Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.