We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Assays Using ddPCR Quantify DNA Fragments

By LabMedica International staff writers
Posted on 14 May 2018
Optimized droplet digital polymerase chain reaction (ddPCR) assays have been developed that quantify short and long DNA fragments. More...
These assays have been used to analyze plasma cell-free (cfDNA) fragment size distribution in human blood.

Circulating cell-free genome in human body fluids is being utilized as a source of genetic material for noninvasive screening, diagnostic and prognostic tests in clinical practice. Plasma cfDNA fragment size distribution provides important information required for diagnostic assay development.

Doctors at the University of Nebraska Medical Center (Omaha, NE, USA) and their colleagues collected blood samples from certified healthy donors and first trimester pregnant donors. Plasma was separated immediately after blood draw by two centrifugation steps. Exosomes were isolated from cell-free plasma using Invitrogen Total Exosome isolation from plasma kit.

Plasma and plasma exosome DNA was extracted using QIAamp Circulating Nucleic Acid Kit. Bio-Rad Automated Droplet Generator was used to generate droplets and thermal cycling was done using Bio-Rad C1000 Touch Thermal cycler. DNA extracted from blood plasma was analyzed using Agilent Bioanalyzer 2100 instrument and Agilent DNA High Sensitivity Kit.

The team developed and optimized four different EvaGreen chemistry based ddPCR assays to amplify four different amplicons with different sizes from human β-actin gene in order to accurately quantify cfDNA with different sizes in human blood plasma. They used concentrated human blood plasma cfDNA as genetic material for the development of these assays. These assays amplify 76, 135, 490 and 905 bp amplicons from human β-actin gene.

The study showed that cfDNA in human blood plasma has two localizations. Blood plasma exosomes are one such localization harboring cfDNA of mostly small fragments. About 72% of cfDNA localized in exosomes are small DNA fragments, less than 490 bp. Blood plasma apoptotic bodies and nucleuses are the other localizations where cfDNA is present. DNA concentration in plasma pellet was seven-fold higher than plasma cfDNA.

The authors concluded that non-pregnant plasma cell-free and exosome DNA share a unique fragment distribution pattern, which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. The study was published online on April 12, 2018, in the journal Clinica Chimica Acta.

Related Links:
University of Nebraska Medical Center


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.