We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Identification of Gene Defects Helps Prostate Cancer Treatment

By LabMedica International staff writers
Posted on 16 Nov 2016
The current method of treating prostate cancer involves identifying gene defects, which could help with the diagnosis of cancer and the development of individualized cancer treatments for patients.

The molecular biology of prostate cancer is now under scrutiny as the goal is to obtain a holistic picture of the disease’s mechanisms and use those mechanisms as a basis for developing new treatments.

Scientists at the University of Tampere (Finland) have been studying the molecular mechanisms in prostate cancer, which is the most common cancer among Finnish men and the second most common cancerous cause of death in males. More...
The disease's underlying mechanisms vary significantly from one individual to the next and therefore, prostate cancer treatments should be designed individually for each patient according to their personal clinical picture.

Several new treatments have been developed for prostate cancer in the past ten years. The same problem remains: the inability to predict which treatment will be most effective for each patient. It has been known for some time that prostate cancer growth is stimulated by male hormones called androgens. Hormonal therapy, which prevents the production or effects of androgens, has been the so-called gold standard in treating the advanced form of the disease.

However, prostate cancer can reactivate the androgen receptor-signaling pathway during treatment. Some types of prostate cancer eventually become independent of androgens. The scientists have found a new mechanism related to the activation of the transcription cofactor Hairy and Enhancer of Split 6 (HES6) as the result of gene fusion, which leads to this type of cancer cell development. These types of prostate cancer need non-hormonal therapy.

Tapio Visakorpi, MD, PhD, a professor and lead investigator of the study, said, “Recent genome studies have shown that even though prostate cancer initiates in a single cell of origin, several cancer cell subpopulations with different genome types emerge as the disease progresses. This is not a single disease; several mechanisms lead to the emergence of the disease. Therefore, it's important to identify those genome defects in each patient that occur in all cancer cells, that is, the so-called truncal mutations, and target the treatment to them. This requires taking multiple samples from the patient. The processing of samples also needs to be improved to make them more suitable for molecular analysis than the current methods. We've developed a new processing method for cancerous tissue.”

Related Links:
University of Tampere


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Gold Member
Automated MALDI-TOF MS System
EXS 3000
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.