We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Spatial Transcriptomics Technique Enables Visualization of Gene Expression in Tissues

By LabMedica International staff writers
Posted on 12 Jul 2016
A team of Swedish researchers has developed a high-resolution method for resolving the transcriptome – the library of active genes and RNAs – in histological samples of patients' tissues.

Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections is a vital aspect of biomedical research and diagnostics. More...
Due to the complexities of current techniques, this typically involves the visualization of only a few proteins or expressed genes at a time.

Investigators at the Karolinska Institutet (Stockholm, Sweden) and the Royal Institute of Technology (Stockholm, Sweden) described a method for visualization and quantitative analysis of the complete transcriptome with spatial resolution in individual tissue sections.

The method, which they called "spatial transcriptomics", relied on positioning histological sections onto arrayed reverse transcription primers with unique positional barcodes. Reverse transcription was followed by sequencing and computational reconstruction, and this could be done for multiple genes simultaneously. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, the investigators demonstrated high-quality RNA-sequencing data with maintained two-dimensional positional information from mouse brain and human breast cancer.

"By placing tissue sections on a glass slide on which we have placed DNA strands with built in address labels we have been able to label the RNA molecules formed by active genes," said senior author Dr. Jonas Frisén, professor of stem cell research at the Karolinska Institutet. "When we analyze the presence of RNA molecules in the sample, the address labels show where in the section the molecules were and we can get high-resolution information on where different genes are active. It makes it possible to study which genes are active in tissues with greater resolution and precision than ever before, which is valuable to both basic research and diagnostics."

The method was described in detail in a paper published in the July 1, 2016, issue of the journal Science.

Related Links:
Karolinska Institutet
Royal Institute of Technology

New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.