We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Spatial Transcriptomics Technique Enables Visualization of Gene Expression in Tissues

By LabMedica International staff writers
Posted on 12 Jul 2016
A team of Swedish researchers has developed a high-resolution method for resolving the transcriptome – the library of active genes and RNAs – in histological samples of patients' tissues.

Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections is a vital aspect of biomedical research and diagnostics. More...
Due to the complexities of current techniques, this typically involves the visualization of only a few proteins or expressed genes at a time.

Investigators at the Karolinska Institutet (Stockholm, Sweden) and the Royal Institute of Technology (Stockholm, Sweden) described a method for visualization and quantitative analysis of the complete transcriptome with spatial resolution in individual tissue sections.

The method, which they called "spatial transcriptomics", relied on positioning histological sections onto arrayed reverse transcription primers with unique positional barcodes. Reverse transcription was followed by sequencing and computational reconstruction, and this could be done for multiple genes simultaneously. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, the investigators demonstrated high-quality RNA-sequencing data with maintained two-dimensional positional information from mouse brain and human breast cancer.

"By placing tissue sections on a glass slide on which we have placed DNA strands with built in address labels we have been able to label the RNA molecules formed by active genes," said senior author Dr. Jonas Frisén, professor of stem cell research at the Karolinska Institutet. "When we analyze the presence of RNA molecules in the sample, the address labels show where in the section the molecules were and we can get high-resolution information on where different genes are active. It makes it possible to study which genes are active in tissues with greater resolution and precision than ever before, which is valuable to both basic research and diagnostics."

The method was described in detail in a paper published in the July 1, 2016, issue of the journal Science.

Related Links:
Karolinska Institutet
Royal Institute of Technology

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.