We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Innovative Gene Testing Technology Finds Cancer Risks

By LabMedica International staff writers
Posted on 19 May 2016
A new method has been developed for identifying mutations and prioritizing variants in breast and ovarian cancer genes, which will not only reduce the number of possible variants for doctors to investigate, but also increase the number of patients that are properly diagnosed.

Advances in next generation sequencing (NGS) have enabled panels of genes, whole exomes, and even whole genomes to be sequenced for multiple individuals in parallel. More...
These platforms have become so cost-effective and accurate that they are beginning to be adopted in clinical settings, as evidenced by recent government approvals.

Genomic scientists at Western University (London, ON, Canada) applied their newly developed methodology to 102 individuals at risk or with a diagnosis of inherited breast cancer. The team also studied 287 women with no known mutations in a separate study. They captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase hereditary breast and ovarian cancer (HBOC) risk.

They increased sequence coverage in complete genes with capture probes by enriching for both single-copy and divergent repeat (more than 30 % divergence) regions, such that, under the correct hybridization and wash conditions, all probes hybridize only to their correct genomic locations. This step was incorporated into a modified version of in-solution hybridization enrichment protocol, in which the majority of library preparation, pull-down, and wash steps were automated using a BioMek FXP automation workstation (Beckman Coulter, Mississauga, Canada).

The scientists identified 15,311 unique variants, of which 245 occurred in coding regions. With the unified information theory (IT)-framework, 132 variants were identified and 87 functionally significant variants of uncertain significance (VUS) were further prioritized. An intragenic 32.1 kb interval in Breast Cancer 2 genes (BRCA2) that was likely hemizygous was detected in one patient. They also identified four stop-gain variants and three reading-frame altering exonic insertions/deletions (indels). After completing the analysis, between zero and three variants were prioritized in most patients.

Peter K. Rogan, PhD, the senior author of the study, said, “When a woman with a family history of breast cancer sees her physician, they want to know if they have a mutation in breast/ovarian cancer genes. All of the patients that we studied had been sequenced for BRCA1 or BRCA2. The causative cancer gene variants are hiding in plain sight in these and other cancer genes, but the original testing laboratory did not recognize them. Our approach can reveal gene variants that might explain their increased risk for cancer.” The study was published on April 11, 2016, in the journal BMC Medical Genomics.

Related Links:
Western University
Beckman Coulter

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.