We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood Test Provides Rapid Method of Detecting Solid Cancers

By LabMedica International staff writers
Posted on 22 Apr 2014
Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive assessment of cancer burden, but existing detection methods have insufficient sensitivity or patient coverage for broad clinical applicability.

A new test has been developed that can quickly and noninvasively monitor the tiny concentrations of cancer cell DNA and this will be useful to clinicians who need to estimate the size of the tumor, how it changes over time, and monitor a patient's response to treatment.

Scientists at Stanford University (Stanford, CA, USA) found a way to improve on existing methods for extracting, processing and analyzing DNA. More...
They called their approach CAPP-Seq, which is short for Cancer Personalized Profiling by deep Sequencing. CAPP-Seq combines optimized library preparation methods for low DNA input masses with a multiphase bioinformatics approach to design a “selector” consisting of biotinylated DNA oligonucleotides that target recurrently mutated regions in the cancer of interest. The investigators examined the genome of the 407 patients with non-small-cell lung cancer recruited for the study.

Matched tumor DNA was isolated from formalin-fixed, paraffin-embedded specimens or from the cell pellet of pleural effusions. Genomic DNA was quantified by Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen; Carlsbad, CA, USA). The concentration of purified plasma DNA was determined by quantitative polymerase chain reaction (qPCR) using a HT7900 Real Time PCR machine (Applied Biosystems; Foster City, CA, USA).

The team tested blood from patients with non-small-cell lung cancer which includes most lung cancers, like adenocarcinomas, squamous cell carcinoma and large cell carcinoma. CAPP-Seq was sensitive enough to detect one molecule of tumor DNA among 10,000 DNA molecules from healthy cells in the blood. They identified 139 genes that only represent 0.004% of the human genome, but are recurrently mutated in non-small-cell lung cancer.

The investigators were able to compile a fingerprint for each cancer type made up of all the DNA mutations recorded and these include insertions or deletions of short pieces of genetic material, plus where sequences of DNA have been shuffled around or even flipped over. While no patient will have all these mutations, nearly all of them will have at least one of them. This makes it possible to compile a test that looks for as many of the known mutations for a given cancer as possible, but it only has to find one of them to strike a positive.

Maximilian Diehn, MD, PhD, co-senior author of the study, said “By sequencing only those regions of the genome that are highly enriched for cancer mutations, we're able to keep costs down and identify multiple mutations per patient. It's also possible we could use CAPP-Seq to identify subsets of early stage patients who could benefit most from additional treatment after surgery or radiation, such as chemotherapy or immunotherapy.” The study was published on April 6, 2014, in the journal Nature Medicine.

Related Links:

Stanford University
Invitrogen
Applied Biosystems 



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.