We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Molecular Method Detects Colon Cancer Earlier

By LabMedica International staff writers
Posted on 24 Sep 2013
Techniques that identify gene variations that have been linked to colon cancer, may soon allow doctors to diagnose the disease in the very first stages, potentially saving patients' lives.

There is a need to provide those people who refuse screening colonoscopy with highly sensitive alternative tests, but the main problems in the attempt to establish molecular assays for noninvasive detection of early cancer stages or even of cancer precursors, are the choice of the appropriate biomarkers.

Scientists at the University of Potsdam (Germany) analyzed 80 human colon tissue and 31 associated feces specimens from subjects that had undergone routine colonoscopy and histopathologic assessment. More...
They used a combination of two techniques to analyze genetic variations within the cancerous and precancerous human colon tissue samples. One technique was the Locked Nucleic Acid (LNA)-based, wild-type blocking (WTB) polymerase chain reaction (PCR), which suppressed normal DNA present in large quantities, and the other was the High-Resolution Melting (HRM), which enhanced the detection of genetic variations. The WTB-PCR was conducted on an Eppendorf Mastercycler gradient (Hamburg, Germany) and the LC 480 Gene Scanning Software (Roche Diagnostics; Mannheim, Germany) was applied for HRM analysis.

There were two genes that were most frequently mutated in patients with colorectal cancer: a mutated Adenomatous polyposis coli (APC) gene was found in 60% of the patients and 40% of the patients has a mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) gene. The two methods detected APC variations in 41 of the 80 samples and identified previously unknown variations in APC. The currently used direct sequencing technique only detected variations in 28 of the samples. When the scientists then analyzed 22 stool samples from patients with APC variations in their colon tissues and 9 control stool samples without APC variations, they successfully detected APC variations in 21 out of the 22 samples.

Bettina Scholtka, PhD, an assistant professor at the University of Potsdam and senior author of the study, said, “Tumor cells are released into stool from the surface of precancers and early-stage colon cancers, but detecting a cancer-initiating genetic mutation among a large quantity of normal DNA from a patient's stool is like looking for a needle in a haystack. By using our technique for examining a selection of genes that become mutated during the process of colon cancer formation, it is possible to detect the very first stage of colon cancer and even precancers in a stool sample.” The study was published in the September 2013 issue of the journal Cancer Prevention Research.

Related Links:
University of Potsdam
Eppendorf
Roche Diagnostics



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
PSA Assay
CanAg PSA EIA
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.