We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Microneedle Skin Patch Enables Cancer Biomarker Sampling for Single-Molecule Measurement

By LabMedica International staff writers
Posted on 18 Sep 2023
Print article
Image: Biomarker molecules can be sampled from melanoma lesions using microneedles (Photo courtesy of Wyss Institute)
Image: Biomarker molecules can be sampled from melanoma lesions using microneedles (Photo courtesy of Wyss Institute)

Patients suffering from melanoma, a severe form of skin cancer where cells that produce pigment grow uncontrollably, have mixed results with current immunotherapies. Over half of these patients do not respond to the available immunotherapy medications, and of those who initially do, many later develop resistance. Therefore, medical professionals need tools to identify which patients are likely to respond positively to the treatment from the outset and which ones will continue or stop responding. Given that skin tumors in melanoma patients are easily accessible, applying immunotherapies directly to the affected area, rather than infusing them through the bloodstream, could be more effective. Moreover, observing how the immune system responds to the treatment directly at the tumor location could lead to more personalized care for patients through continuous and accurate monitoring of various indicators that signal effective immune cell activation and the desired inflammatory response.

Now, a research team including scientists at the Wyss Institute at Harvard University (Boston, MA, USA) has developed an innovative technique that combines a minimally invasive, painless microneedle platform with an ultra-sensitive, single-molecule detection method known as Simoa. These microneedles can absorb fluid that contains biomarkers from deeper skin layers, while the Simoa technology can recognize these often elusive but crucial biomarkers with greater sensitivity than traditional methods. As a proof of concept, the researchers tested their approach in a mouse model of melanoma, treating the cancerous growths with a new kind of therapy. This novel treatment employs focused ultrasound to generate heat and instantly kill tumor cells at the lesion site, and it is paired with a specially designed nanoparticle that activates an inflammation-causing protein known as the stimulator of interferon genes (STING).

The team developed four different Simoa assays to detect molecules whose expression is activated by STING: interferon-b (IFN-b), MCP-1 and KC, which draw immune cells towards the tumors, as well as the broad inflammation marker, interleukin-6 (IL-6). This allowed the researchers to detect these biomarkers in fluid samples collected by the microneedles with sensitivities 100 to 1000 times greater than conventional tests. Importantly, these measurements were in line with other Simoa tests of the same biomarkers in blood samples. The study findings are reported in Advanced Functional Materials.

“Rapid readout of the responses to melanoma therapy using microneedles may enable effective drug screening and patient stratification to maximize therapeutic benefits,” said Wyss Associate Faculty member Natalie Artzi, Ph.D., who led the study.

“The Artzi lab’s remarkable microneedle technology containing engineered nanostructures, in principle, enables both, drug delivery and microsampling – a completely new concept for a theranostic, which provides an ideal, non-invasive and comprehensive solution to melanoma treatment,” said Wyss Core Faculty member David Walt, Ph.D., who had previously developed the Simoa technology, which has ultrasensitive biomarker detection abilities.

Related Links:
Wyss Institute at Harvard University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.