We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Liquid Biopsy Biomarkers for Aggressive Prostate Cancer Discovered

By LabMedica International staff writers
Posted on 05 Jul 2016
Print article
Using targeted proteomics on noninvasive liquid biopsies, researchers have discovered biomarkers that provide signatures of aggressive (extracapsular) prostate cancer (PC), which could enable diagnosis before treatment and so help many low-risk PC patients avoid surgery.

Currently, needle biopsies are used to help diagnose PC, but this technique may not detect hidden tumors or cancer that has already spread beyond the organ. The new research advances the quest to develop a precise, noninvasive diagnostic tool that can address over-treatment of slow-growing, low-risk PC.

"We believe we have found a better way that allows us to predict which patients have a slow-growing versus aggressive PC using non-invasive biomarkers. This could eventually help us personalize cancer treatment for these patients," said principal investigator Prof. Dr. Thomas Kislinger, of Princess Margaret Cancer Centre, University Health Network (UHN; Toronto, Canada), and of University of Toronto.

"A fluid-based biomarker would be ideal … to spare patients with indolent (slow-growing) disease from unnecessary procedures, while identifying and treating those who would benefit from treatment intensification," said co-lead author Dr. Yunee Kim.

The Kislinger team – in collaboration with Paul Boutros, Ontario Institute for Cancer Research (Canada), and O. John Semmes, Eastern Virginia Medical School (Norfolk, VA, USA) – used urine samples containing prostatic secretions from 210 patients after they had undergone digital rectal examinations (DRE, the standard clinical "first step" to determine need for further diagnostic testing of the prostate). The research took four years and involved samples from almost 300 patients.

"We used targeted proteomics to accurately quantify hundreds of proteins in urine samples (post-DRE) to identify liquid biopsy signatures. The first round of research involved 80 patients and quantified 150 proteins that were then narrowed down to 34 for further investigation. The next round involved a second, independent cohort of 210 patients,” said Dr. Kislinger, "Applying computational biology, we used the quantitative data from mass spectrometry to develop the fluid biomarkers for aggressive PC." He added, "The next step will be further studies with urine samples from 1,000 international patients to validate if the biomarkers identified have broader clinical utilities in PC."

The study, by Kim Y, Jeon J, et al, was published online ahead of print June 28, 2016, in the journal Nature Communications.

Related Links:
University Health Network


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.