We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

By LabMedica International staff writers
Posted on 01 Nov 2024

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. More...

Early in the disease, patients experience hematuria, which is followed by proteinuria and, eventually, end-stage renal failure that necessitates renal replacement therapies such as dialysis or kidney transplantation. The exact prevalence of Alport syndrome remains uncertain; however, the X-linked form, caused by a mutation in a gene located on the X chromosome, is the most prevalent type. Males, who possess a single X chromosome (XY), tend to experience more severe symptoms compared to females, who have two X chromosomes (XX). Although female patients with X-linked Alport syndrome are often thought to have a milder variant of the disease, studies conducted in the United States and Japan indicate that about 15% of these women may reach end-stage renal failure by age 40. Diagnosing Alport syndrome typically involves genetic testing and a pathological examination of kidney tissue. However, accurately predicting renal outcomes in female patients presents challenges, underscoring the need for indicators that can evaluate the effectiveness of renal protective treatments, such as antihypertensive medications, which have shown potential to improve patient prognosis.

A research team at the University of Tsukuba (Tsukuba, Japan) has developed an innovative imaging technique to visualize lesions in the glomerular basement membrane using a mouse model of Alport syndrome. By applying deep learning methodologies to pathological image data, the researchers achieved automated detection of lesions through artificial intelligence (AI). The study utilized a mouse model that simulates Alport syndrome to compare the kidney lesions between male and female subjects, aiming to provide insights into the specifics of these lesions in females. They created a modified periodic acid methenamine silver stain to observe basement membrane lesions in areas where type IV collagen α5 is intact as well as in regions where it is absent, which are distinctive in female patients.

Additionally, the AI system was able to automatically identify these lesions using deep learning techniques, as detailed in research published in the American Journal of Pathology. The quantitative measurements of kidney lesions in female mice, as assessed by the imaging AI software, showed a positive correlation with proteinuria levels, suggesting that this approach may assist in predicting kidney function outcomes in women with Alport syndrome.


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.