We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Faster Measurement of Vibrational Fingerprint of Molecules to Advance Biomedical Diagnostics

By LabMedica International staff writers
Posted on 25 Oct 2024

Identifying different types of molecules and cells is a vital process in both basic and applied science. More...

Raman spectroscopy serves as a widely utilized measurement technique for this purpose. When a laser beam is directed at molecules, the light interacts with the vibrations and rotations of molecular bonds, causing a shift in the frequency of the scattered light. The resulting scattering spectra act as a unique “vibrational fingerprint” for each molecule. Despite its widespread use, there have been numerous efforts to enhance Raman spectroscopy, particularly because one of its main limitations is the measurement rate, which often prevents it from keeping pace with rapid changes in certain chemical and physical reactions. Now, scientists have successfully increased the measurement rate of Raman spectroscopy, paving the way for advancements in various applications such as ultrafast measurements of irreversible phenomena, high-speed hyperspectral Raman imaging, and high-throughput Raman flow cytometry.

Scientists at the Institute for Photon Science and Technology at the University of Tokyo (Tokyo, Japan) set to improve the measurement rate of Raman spectroscopy by building a system from scratch and managed to achieve a 100-fold increase. Since measurement rate has been a critical limitation, this enhancement could facilitate progress in numerous fields that depend on identifying molecules and cells, including biomedical diagnostics and material analysis. Drawing on their expertise in optics and photonics, the scientists integrated three key components: coherent Raman spectroscopy, which generates stronger signals than traditional spontaneous Raman spectroscopy; a specially designed ultrashort pulse laser; and time-stretch technology utilizing optical fibers. The results, published in the journal Ultrafast Science, show that the researchers achieved a measurement rate of 50 MSpectra/s (megaspectra per second), which is a 100-fold increase compared to the previous fastest measurement of 50 kSpectra/s (kilospectra per second). This advancement holds significant potential across a range of applications.

“We aim to apply our spectrometer to microscopy, enabling the capture of 2D or 3D images with Raman scattering spectra,” said Takuro Ideguchi of the Institute for Photon Science and Technology at the University of Tokyo, who was the principal investigator of the study. “Additionally, we envision its use in flow cytometry by combining this technology with microfluidics. These systems will enable high-throughput, label-free chemical imaging and spectroscopy of biomolecules in cells or tissues.”


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.