We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Diagnosing Disease Conditions by Analyzing Plasma Protein Expression Patterns

By LabMedica International staff writers
Posted on 09 Dec 2019
A proof-of-concept study demonstrated that protein expression patterns in plasma samples were indicative of many different health issues, and that combining large-scale protein scanning with machine learning was a viable approach for the development of new diagnostic and prognostic tools. More...


Proteins represent an enormous potential resource for personalized, systemic and data-driven diagnosis, prevention, monitoring, and treatment. However, the concept of using plasma proteins for individualized health assessment across many health conditions simultaneously has not been tested.

To evaluate the potential of large-scale plasma protein analysis, investigators at the University of Cambridge (United Kingdom) and colleagues at institutions in the United States and at the biotechnology company SomaLogic (Boulder, CO, USA) developed and validated protein-phenotype models for 11 different health indicators. These included liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes risk and primary cardiovascular event risk.

The investigators employed a technique that used fragments of nucleic acids known as aptamers to bind to target proteins. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues, and organisms. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic.

The investigators used SomoLogic’s genetic sequencing technology, to quantify the aptamers and determine which proteins were present and in what concentrations. For the current study, 5,000 proteins in plasma samples contributed by nearly 17,000 participants in five observational cohorts were scanned resulting in about 85 million protein targets being measured.

Results of this proof-of-concept study demonstrated that protein expression patterns reliably encoded for many different health issues, and that large-scale protein scanning coupled with machine learning was a viable approach for exploiting this information.

"Proteins circulating in our blood are a manifestation of our genetic make-up as well as many other factors, such as behaviors or the presence of disease, even if not yet diagnosed," said contributing author Dr. Claudia Langenberg, a program leader at the University of Cambridge School of Clinical Medicine. "This is one of the reasons why proteins are such good indicators of our current and future health state and have the potential to improve clinical prediction across different and diverse diseases."

"It is remarkable that plasma protein patterns alone can faithfully represent such a wide variety of common and important health issues, and we think that this is just the tip of the iceberg," said first author Dr. Stephen Williams, Chief Medical Officer at SomaLogic. "We have more than a hundred tests in our SomaSignal pipeline and believe that large-scale protein scanning has the potential to become a sole information source for individualized health assessments."

The plasma protein analysis study was published in the December 2, 2019, online edition of the journal Nature Medicine.

Related Links:
University of Cambridge
SomaLogic



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.