We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Model Reveals True Biological Age From Five Drops of Blood

By LabMedica International staff writers
Posted on 19 Mar 2025

Some individuals seem to defy the effects of aging, appearing significantly younger than their peers despite sharing the same age. More...

Aging isn't solely determined by the number of years we have lived; it's also influenced by genetics, lifestyle, and environmental factors. Conventional methods of assessing biological age typically focus on broad biomarkers, like DNA methylation or protein levels. However, these techniques often overlook the complex hormonal systems that regulate the body's internal balance. Now, scientists have developed a novel approach for estimating a person’s biological age, which measures how well the body has aged rather than simply counting the years since birth.

This new method, developed by scientists at Osaka University (Osaka, Japan), uses only five drops of blood to analyze 22 key steroids and their interactions, offering a more precise health assessment. Published in Science Advances, the team’s breakthrough study presents a potential leap forward in personalized health management, enabling earlier identification of age-related health risks and more tailored interventions. Since hormones are essential for maintaining bodily functions, the researchers chose to focus on these as key indicators of aging. To test this hypothesis, the team concentrated on steroid hormones, which are vital in metabolism, immune response, and stress management.

The researchers created a deep neural network (DNN) model that incorporates steroid metabolism pathways, making it the first AI model to consider the interactions between different steroid molecules. Rather than examining absolute steroid levels—which can vary greatly between individuals—the model looks at the ratios of steroids, delivering a more personalized and accurate biological age assessment. Trained on blood samples from hundreds of individuals, the model revealed that biological age differences become more pronounced as people age, an effect the researchers liken to a river widening as it flows downstream.

One of the most surprising findings of the study concerns cortisol, a steroid hormone linked to stress. The researchers discovered that when cortisol levels doubled, biological age increased by about 1.5 times. This suggests that chronic stress could speed up aging at the biochemical level, emphasizing the importance of managing stress to maintain long-term health. The team believes that this AI-driven biological age model could lead to more personalized health monitoring.

Potential future applications for this technology include early disease detection, tailored wellness programs, and lifestyle recommendations to slow the aging process. While the study marks significant progress, the team acknowledges that biological aging is influenced by numerous factors beyond hormones. With continued advancements in AI and biomedical research, the ability to measure—and possibly slow—biological aging is becoming more attainable. For now, the capability to assess an individual’s “aging speed” with a simple blood test could be a revolutionary development in preventive healthcare.

“This is just the beginning,” said Dr. Zi Wang, co-first and corresponding author of this work. “By expanding our dataset and incorporating additional biological markers, we hope to refine the model further and unlock deeper insights into the mechanisms of aging.”

Related Links:
Osaka University


New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.