We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division


Leica Biosystems develops and supplies cancer diagnostics devices and solutions in the areas of histology, digital pa... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Sep 2021 - 25 Sep 2021

Low-Cost Transcriptional Diagnostic Accurately Categorizes Lymphomas

By LabMedica International staff writers
Posted on 14 Jun 2021
Print article
Image: An automated Leica BOND-III immunostainer (Photo courtesy of Leica Biosystems)
Image: An automated Leica BOND-III immunostainer (Photo courtesy of Leica Biosystems)
Lymphoma is a cancer of the lymphatic system, which is part of the body's germ-fighting network. The lymphatic system includes the lymph nodes (lymph glands), spleen, thymus gland and bone marrow. Lymphoma can affect all those areas as well as other organs throughout the body.

Many subtypes of lymphoma can be effectively treated with available therapies, including chemotherapies, monoclonal antibodies, or small molecule–targeted agents. As a result, there is a pressing need for inexpensive, accurate, and operator-independent diagnostics to guide therapeutic selection for patients with lymphoma.

An international team of medical scientists led by the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) collected Formalin-fixed Paraffin-embedded (FFPE) biopsy specimens obtained at Instituto de Cancerología y Hospital Dr. Bernardo Del Valle (INCAN, Guatemala City, Guatemala), that were performed because of clinical suspicion of lymphoma over a 13-year period. This included 3,015 tissue blocks from 1,836 individual patients. Most biopsy specimens were from lymph nodes or secondary lymphoid tissue, but additional extranodal sites (e.g., palate, testicle, eyelid, femur, thyroid, skin, mesentery, tongue, breast, and lung) were included.

One-half of each FFPE block and H&E slides were generated from whole sections and reviewed by two expert hematopathologists. Representative areas were selected, and two cores from each sample were included for tissue microarray (TMA) construction. TMAs were sectioned at 4-μm thickness and subjected to immunohistochemistry (IHC) per routine protocol on automated Leica BOND-III immunostainers (Leica Biosystems, Buffalo Grove, IL, USA) or BenchMark ULTRA, Roche/Ventana Medical Systems, Tucson, AZ, USA). Capillary electrophoresis was run on an Applied Biosystems 3500 or SeqStudio Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA).

The team established a chemical ligation probe-based assay (CLPA) that quantifies expression of 37 genes by capillary electrophoresis with reagent/consumable cost of approximately USD 10/sample. To assign bins based on gene expression, 13 models were evaluated as candidate base learners, and class probabilities from each model were then used as predictors in an extreme gradient boosting super learner. Cases with call probabilities < 60% were classified as indeterminate. Four (2%) of 194 biopsy specimens in storage <3 years experienced assay failure. Diagnostic samples were divided into 397 (70%) training and 163 (30%) validation cohorts. Overall accuracy for the validation cohort was 86%.

After excluding 28 (17%) indeterminate calls, accuracy increased to 94%. Concordance was 97% for a set of 37 high-probability calls assayed by CLPA in both the USA and Guatemala. Accuracy for a cohort of 39 relapsed/refractory biopsy specimens was 79% and 88%, respectively, after excluding indeterminate cases. Machine-learning analysis of gene expression accurately classifies paraffin-embedded lymphoma biopsy specimens and could transform diagnosis in lower- and middle-income countries. The study was published on May 14, 2021 in the journal Blood Advances.

Related Links:
Fred Hutchinson Cancer Research Center
Instituto de Cancerología y Hospital Dr. Bernardo Del Valle
Leica Biosystems
Roche/Ventana Medical Systems
Thermo Fisher Scientific

Gold Supplier
Silver Supplier
Lipid Profile Analyzer
Cholestech LDX
Silver Supplier
Cartridge Incubator
WS-i60 Cartridge Incubator
Gold Supplier
Liquid Handling Workstation
AdvanSure E3 SYSTEM

Print article



view channel
Image: The CellSearch Circulating Tumor Cell Kit is intended for the enumeration of circulating tumor cells of epithelial origin (CD45-, EpCAM+, and cytokeratins 8, 18+, and/or 19+ and PD-L1) in whole blood (Photo courtesy of CellSearch/Menarini Silicon Biosystems)

PD-L1 Expression in Circulating Tumor Cells Investigated for NSCLC

In non-small cell lung cancer (NSCLC), analysis of programmed cell death ligand 1 (PD-L1) expression in circulating tumor cells (CTCs) is a potential alternative to overcome the problems linked to the... Read more


view channel

Global Digital Polymerase Chain Reaction (dPCR) Market Projected to Reach Close to USD 1.15 Billion by 2028

The global digital polymerase chain reaction (dPCR) market is projected to grow at a CAGR of more than 9% from over USD 0.50 billion in 2020 to nearly USD 1.15 billion by 2028, driven primarily by rising... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.