We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Metabolomics Analysis Method Used for Diagnosis of IBD

By LabMedica International staff writers
Posted on 15 Jul 2019
Print article
Image: A micrograph of a colonic biopsy showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a colonic biopsy showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
A team of Canadian researchers used an advanced metabolomics approach to differentiate inflammatory bowel syndrome (IBS) from other related gastrointestinal disorders.

Irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal (GI) disorder in developed countries, is characterized by chronic abdominal pain and altered bowel habits. Accurate and timely diagnosis of IBS is challenging as it relies on observation of symptoms and an evolving set of exclusion criteria to distinguish it from other related GI disorders such as inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis.

To develop better a better method for diagnosis of IBS, investigators at McMaster University (Montreal, Canada) used multisegment injection-capillary electrophoresis-mass spectrometry to generate metabolite profiles in repeat urine specimens collected from a cohort of 42 IBS patients and compared them to profiles from 20 healthy controls.

Results revealed ten consistently elevated urinary metabolites in repeat samples collected from IBS patients at two different time points, which were associated with greater collagen degradation and intestinal mucosal turn-over processes likely due to low-grade inflammation. IBS-specific metabolites identified in urine included a series of hydroxylysine metabolites (O-glycosylgalactosyl-hydroxylysine, O-galactosyl-hydroxylysine, lysine), mannopyranosy-l-tryptophan, imidazole propionate, glutamine, serine, ornithine, dimethylglycine, and dimethylguanosine.

While the metabolomics approach avoided invasive blood sampling, colonoscopy, and/or tissue biopsies, the investigators warned that at this time its usefulness was limited somewhat by the propensity of IBS patients to suffer from additional illnesses, including depression, and that they took more prescribed medications than did the healthy controls.

“Diagnostic testing for IBS involves a long process of excluding other related gut disorders, such as inflammatory bowel disease,” said senior author Dr. Philip Britz-McKibbin, professor of chemistry and chemical biology at McMaster University.

"We were interested in finding if there is a better way to detect and monitor IBS that avoids invasive colonoscopy procedures while also giving us better insights into its underlying mechanisms.”

The study was published in the May 20, 2019, online edition of the journal Metabolomics.

Related Links:
McMaster University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.