We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel Biosensor Detects Neurogenerative Disease Proteins

By LabMedica International staff writers
Posted on 17 Jul 2023
Print article
Image: A single sensor combines multiple advanced technologies to diagnose neurodegenerative diseases (Photo courtesy of EPFL)
Image: A single sensor combines multiple advanced technologies to diagnose neurodegenerative diseases (Photo courtesy of EPFL)

The struggle to diagnose neurodegenerative diseases (NDDs), including Alzheimer's and Parkinson's, has primarily been due to the absence of reliable diagnostic tools for the early detection and tracking of disease progression. One main characteristic of neurodegeneration is protein misfolding, recognized as a significant event in the advancement of the disease. The theory is that in the initial stages, normal proteins misfold into oligomers and, in later stages, into fibrils. These misshaped protein aggregates circulate in the brain and body fluids, as well as accumulate as deposits in the brains of those who died from NDDs. However, the development of tools to identify these disease markers or biomarkers has remained unresolved until now due to various barriers, including the limitations of current technology to accurately distinguish and quantify different protein aggregates.

Researchers at EPFL (Lausanne, Switzerland) have now made a significant breakthrough in NDD diagnosis by combining multiple advanced technologies into a single system. This innovative system dubbed the ImmunoSEIRA sensor, employs biosensing technology to detect and identify misfolded protein biomarkers associated with NDDs. In addition, the system leverages the power of artificial intelligence (AI), utilizing neural networks to quantify disease stages and progression. This groundbreaking advancement offers hope for not only early NDD detection and monitoring but also for evaluating treatment options at different disease progression stages.

The researchers created this sophisticated NDD biomarker sensor by combining various scientific fields: protein biochemistry, optofluidics, nanotechnology, and AI. The ImmunoSEIRA sensor uses a technique called surface-enhanced infrared absorption (SEIRA) spectroscopy, allowing scientists to identify and analyze the structure of specific disease-linked molecules or biomarkers tied to NDDs. The sensor features a unique immunoassay to identify and capture these biomarkers with utmost precision. The ImmunoSEIRA sensor utilizes gold nanorod arrays with antibodies for precise protein detection and facilitates real-time specific capture and structural analysis of target biomarkers from minute samples. AI-driven neural networks are employed to identify the presence of specific misfolded protein forms - the oligomeric and fibrillary aggregates, providing an unprecedented level of detection precision as the diseases progress.

The EPFL researchers went on to demonstrate that the ImmunoSEIRA sensor can be applied in real clinical settings, i.e., in biofluids. They successfully identified the unique signature of abnormal fibrils, a key NDD indicator, even in complex fluids such as human cerebrospinal fluid (CSF). This study's results mark a significant leap in the domains of biosensing, infrared spectroscopy, nanophotonics, and NDD biomarkers. The introduction of the AI-assisted ImmunoSEIRA sensor is a positive development for early NDD detection, disease monitoring, and drug efficacy evaluation, fulfilling the urgent need for prompt intervention and treatment of NDDs.

“Since the disease process is tightly associated with changes in protein structure, we believe that structural biomarkers, especially when integrated with other biochemical and neurodegeneration biomarkers, could pave the way for more precise diagnosis and monitoring of disease progression,” said Professor Hilal Lashuel.

Related Links:
EPFL 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.