We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




CRISPR-based Assay Platform Detects Multiple Viruses and COVID-19 Variants

By LabMedica International staff writers
Posted on 17 Feb 2022
Print article
Image: SARS-CoV-2 RNA strand (Photo courtesy of 123rf.com)
Image: SARS-CoV-2 RNA strand (Photo courtesy of 123rf.com)

A cost-effective virus and variant detection platform has been developed that can test for up to 21 viruses, including SARS-CoV-2, other coronaviruses, and both influenza strains.

Investigators at Broad Institute of MIT and Harvard University (Cambridge, MA, USA) and Princeton University (Princeton, NJ, USA) have described the development of the diagnositic platform known as mCARMEN (microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids). The mCARMEN platform is an upgraded and refined version of their CARMEN system, which depended on nanoliter droplets containing CRISPR/Cas 13-based nucleic acid detection reagents.

Recent computational efforts to identify new CRISPR systems uncovered a novel type of RNA targeting enzyme, Cas13. The diverse Cas13 family contains at least four known subtypes, including Cas13a (formerly C2c2), Cas13b, Cas13c, and Cas13d. Cas13a was shown to bind and cleave RNA, protecting bacteria from RNA phages and serving as a powerful platform for RNA manipulation. It was suggested that Cas13a could function as part of a versatile, RNA-guided RNA-targeting CRISPR/Cas system holding great potential for precise, robust, and scalable RNA-guided RNA-targeting applications.

The original CARMEN platform required custom equipment, involved a manually intensive eight to 10-hour workflow, and offered throughput that was too low for the requirements of a pandemic. Therefore, the investigators modified the CARMEN procedure to work on the Fluidigm (San Francisco, CA, USA) microfluidics and instrumentation platform, making it easier to run and cutting the run time in half. The investigators also streamlined the workflow for greater sensitivity, so that it could detect pathogens in samples with less genetic material. Furthermore, by using CRISPR-based enzymes Cas12 and Cas13 in combination, mCARMEN could not only detect the presence of a virus, but also measured the amount of virus in a sample.

To complement the mCARMEN protocol, the investigators developed a respiratory virus panel (RVP) to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. They further developed an mCARMEN panel to enable identification of six SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens. Finally, they implemented a combined Cas13 and Cas12 approach that enabled quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples.

"The COVID-19 pandemic shows us that we need more testing, more often, particularly early on in a pandemic," said senior author Dr. Cameron Myhrvold, assistant professor of molecular biology at Princeton University. "COVID-19 shows us that challenging viruses will keep emerging, so we have to keep looking for them and come up with better ways of doing that."

The mCARMEN method was described in the February 7, 2022, online edition of the journal Nature Medicine.

Related Links:
Broad Institute of MIT and Harvard University 
Princeton University
Fluidigm 

 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.