We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI Outperforms Expert Pathologists in Predicting Lung Cancer Spread

By LabMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)

For years, the medical community has been struggling with the challenge of predicting which lung cancer patients are most likely to experience metastasis. This knowledge is crucial for treating early-stage non-small cell lung cancer (NSCLC) patients, as it influences whether they should undergo aggressive treatments like chemotherapy or radiation after lung surgery. Over half of stage I–III NSCLC patients eventually face brain metastasis, but for many others, such intensive treatments are unnecessary. Now, researchers have found that artificial intelligence (AI) could be a promising tool in aiding physicians with these critical decisions.

A groundbreaking pilot study conducted by Caltech (Pasadena, CA, USA) and Washington University School of Medicine in St. Louis (WUSTL, St. Louis, Mo, USA) revealed AI's capability to outperform expert pathologists in predicting the likelihood of cancer metastasis in NSCLC patients. The study involved training a deep-learning network, a sophisticated type of AI program, using hundreds of thousands of image tiles derived from biopsy images of 118 NSCLC patients. These images are typically reviewed by pathologists for cell abnormalities indicating cancer progression. The AI was tested with 40 additional biopsy images to assess its ability to predict brain metastases, demonstrating a striking 87% accuracy, surpassing the 57% accuracy rate of four expert pathologists.

Notably, the AI's predictions were even more accurate for the earliest-stage NSCLC patients (stage I) and were based on standard microscopic slides. The researchers believe that incorporating more data, such as disease severity and biomarkers, could enhance the AI's predictive capabilities. However, the researchers caution that this is just an initial step, and a larger study is necessary to validate these findings. Interestingly, the AI doesn't explicitly reveal the factors influencing its predictions, prompting ongoing research to decode the complex tumor cell features and their environment it might be analyzing. Going forward, Caltech scientists aim to develop improved instrumentation and procedures for collecting uniform, high-quality biopsy images, which could further refine the accuracy of AI predictions in cancer treatment.

"Overtreatment of cancer patients is a big problem," said Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech. "Our pilot study indicates that AI may be very good at telling us in particular which patients are very unlikely to develop brain cancer metastasis."

"Our study is an indication that AI methods may be able to make meaningful predictions that are specific and sensitive enough to impact patient management," added Richard Cote, head of the Department of Pathology & Immunology at WUSTL.

Related Links:
Caltech
WUSTL

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.