We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Diagnosing IBD by Evaluating Epigenetic Markers in Blood

By Gerald M. Slutzky, PhD
Posted on 07 Dec 2016
Print article
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Epigenetic screening of blood samples has been proposed as a new approach to diagnosing patients with inflammatory bowel diseases (IBD).

Symptoms are similar in Crohn's disease, ulcerative colitis, and other inflammatory bowel conditions, which makes it difficult for doctors to diagnose which of the illnesses a patient has.

In an effort to develop better diagnostic tools for IBD, investigators at the University of Edinburgh (United Kingdom) used Illumina (San Diego, CA, USA) instruments and microarray technology to determine differentially methylated sites in whole blood and in immunomagnetically separated leucocytes (CD4+ and CD8+ lymphocytes and CD14+ monocytes) from 240 newly-diagnosed IBD cases and 190 controls.

The investigators reported that they had identified differentially methylated positions (DMPs) and regions (DMRs) in whole-blood DNA samples from 240 newly diagnosed IBD cases (121 Crohn's disease and 119 ulcerative colitis) and 191 controls. Technical validation and detailed characterization of DMRs was performed in a small cohort of six cases (three Crohn's disease and three ulcerative colitis) and three controls using whole-genome bisulphite sequencing. Independent validation of methylation results was performed using bisulphite pyrosequencing in a further cohort of 240 patients with established IBD and 98 controls.

Senior author Dr. Jack Satsangi, professor of gastroenterology at the University of Edinburgh, said, "Our findings bring fresh insights to the underlying causes of inflammatory bowel diseases, which could eventually lead to new treatments. Characterizing epigenetic signatures in the DNA of patients could help us to devise better tests for diagnosing these diseases, so that patients can be given the best possible care."

The study was published in the November 25, 2016, online edition of the journal Nature Communications.

Related Links:
University of Edinburgh
Illumina
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.