We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Personalized Cancer Diagnostics Based on Circulating Tumor DNA Profiling

By Gerald M. Slutzky, PhD
Posted on 22 Nov 2016
Print article
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Cancer researchers have demonstrated that profiling of circulating tumor DNA (ctDNA) revealed molecular determinants that enabled them to predict adverse outcomes in patients with diffuse large B cell lymphoma and that could be developed into a method for personalized diagnosis.

Diffuse large B cell lymphoma (DLBCL) is a relatively common type of tumor that can exhibit a wide range of behaviors, from asymptomatic and curable cancers to ones that are very aggressive and difficult to treat. Investigators at Stanford University (Palo Alto, CA, USA) hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants that would enable them to classify tumors as to their likely clinical outcome.

To this end they applied CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. CAPP-Seq is a sensitive method used to quantify DNA in cancer. It measures cell-free tumor DNA, which is released from dead tumor cells into the blood. This method can detect one molecule of mutant DNA in 10,000 molecules of healthy DNA. CAPP-Seq targets specific areas of the genome that are recurrently mutated for a given cancer. It can also target multiple areas of the genome at once and a variety of different types of mutations, allowing for a lower amount of input DNA compared to other methods.

The investigators reported that at diagnosis low levels of ctDNA correlated strongly with progression-free survival in the patients, but that those with higher levels of ctDNA faired more poorly overall. They demonstrated that ctDNA genotyping could classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, their approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, they identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL.

The results suggested that there were at least five ways that analysis of circulating tumor DNA could yield potentially clinically useful information: by quantifying tumor burden, identifying disease subtype, cataloging mutations, predicting transformation, and providing early warnings of recurrence.

"Now we can identify the subtype of the tumor, watch how it changes over time, and begin to tailor our chemotherapy choices based on the presence or absence of specific mutations," said senior author Dr. Ash Alizadeh, assistant professor of medicine at Stanford University. "We have moved beyond just measuring disease burden based on the amount of tumor DNA in the blood."

The study was published in the November 9, 2016, online edition of the journal Science Translational Medicine.

Related Links:
Stanford University
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.