We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Test Could Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 21 Sep 2016
Print article
Image: A colorized scanning electron micrograph (SEM) of esophageal cancer cells (Photo courtesy of the University of California-Davis).
Image: A colorized scanning electron micrograph (SEM) of esophageal cancer cells (Photo courtesy of the University of California-Davis).
A new blood test has been developed that could detect cancer earlier than ever before and it will change the way cancer is diagnosed, and in turn potentially save millions of lives.

The assay is based on a simple blood test and it could be used to identify cancer in undiagnosed patients. It would be used to screen people who are at-risk or are asymptomatic, meaning it could detect cancer even before symptoms begin to show.

Scientists at Swansea University Medical School (UK) have optimized this test over the past four years in more than 300 individuals using esophageal cancer as an example. The studies included healthy controls, pre-cancer patients and patients with cancer. The blood is stained with antibodies, which work as markers to see if there have been changes to the surface. It takes around 30 minutes to test the blood, and they estimate each test costs around GBP 35 or USD 46. The test was able to distinguish healthy volunteers and patients with a pre-cancerous condition of the esophagus, from those with cancer itself.

In healthy control individuals, only a few mutated cells are detected per million red blood cells with a mean of about five per million, but in cancer patients this can rise by over 10-fold to 50-100 mutants per million. In patients undergoing chemotherapy, who are exposed to drugs that deliberately induce DNA mutations, the levels can be several hundred per million. Interestingly, these red blood cell mutations do not play a direct role in the cancer development process. They are “collateral damage” produced in circulating blood cells as a by-product of a cancer developing internally. The benefit of the blood cell mutation is that it can be monitored in a simple, efficient, and non-invasive way. The actual test on the blood takes a few hours to perform in the laboratory and can be done in any standard pathology department, as it utilizes standard laboratory equipment.

Gareth Jenkins, PhD, a professor and lead investigator, said, “The test detects changes, known as mutations, in red blood cell surface proteins. These sugary proteins act as “Velcro” to stick cell recognition proteins to the cell surface. In mutated cells, the “Velcro” is missing and so the cells are “naked” for the protein of interest. Staining cells with fluorescent antibodies for the cell recognition proteins identifies normal from mutated cells which allows a mutant cell frequency to be calculated per person.” The study was presented on September 6, 2016, at the British Science Festival held at Swansea University, UK.

Related Links:
Swansea University Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.