We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Circulating Immune Cells Act As Idiopathic Pulmonary Fibrosis Biomarkers

By LabMedica International staff writers
Posted on 14 Sep 2016
Print article
Image: The BD LSRII flow cytometer (Photo courtesy of Becton Dickinson).
Image: The BD LSRII flow cytometer (Photo courtesy of Becton Dickinson).
Patients with fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF), show progressive worsening of lung function with increased shortness of breath and dry cough.

To-date, this process is irreversible, which is why scientists are searching for novel biomarkers or indicators, which enable earlier diagnosis of this disease, with the aim to better interfere with disease progression.

Scientists at the Helmholtz Zentrum München (Munich, Germany) prospectively included 170 patients in the analysis, divided into 69 IPF, 56 non-IPF interstitial lung disease (ILD), 17 with hypersensitivity pneumonitis, 27 with nonspecific interstitial pneumonia, 12 with connective tissue disease- (ILD), and 23 chronic obstructive pulmonary disease (COPD) patients, as well as 22 healthy controls.

For immunophenotyping, the team collected fresh venous blood in EDTA-coated vacutainer tubes. Briefly, whole blood or peripheral blood mononuclear cell (PBMC) buffy coats were used for flow cytometry detection of myeloid-derived suppressor cells (MDSC) and lymphocyte subtypes. Erythrocytes were lysed with a Coulter Q-Prep working station (Beckman Coulter, Brea, CA, USA). Data acquisition was performed in a BD LSRII flow cytometer or a BD fluorescence-activated cell sorter (FACS) ARIA II (Becton Dickinson, Heidelberg, Germany) if cells were sorted. The T-cell suppression assay and MDSC co-cultures were also performed.

Peripheral blood mononuclear cell (PBMC) Messenger ribonucleic acid (mRNA) levels were analyzed by real time polymerase chain reaction (qRT-PCR). The investigators detected increased MDSC in IPF and non-IPF ILD compared with controls (30.99 ± 15.61% versus 18.96 ± 8.17%). Circulating MDSC inversely correlated with maximum vital capacity in IPF, but not in COPD or non-IPF ILD. MDSC suppressed autologous T-cells. The mRNA levels of co-stimulatory T-cell signals were significantly downregulated in IPF PBMC. Importantly, CD33+CD11b+ cells, suggestive of MDSC, were detected in fibrotic niches of IPF lungs.

Oliver Eickelberg, MD, a professor and lead investigator said, “We were able to show that MDSC are primarily found in fibrotic niches of IPF lungs characterized by increased interstitial tissue and scarring, that is, in regions where the disease is very pronounced, and as a next step, we seek to investigate whether the presence of MDSC can serve as a biomarker to detect IPF and to determine how pronounced it is. Controlling accumulation or expansion of MDSC or blocking their suppressive functions may represent a promising treatment options for patients with IPF. ” The study was published on September 1, 2016, in the European Respiratory Journal.

Related Links:
Helmholtz Zentrum München
Beckman Coulter
Becton Dickinson
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.