We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Standard Clinical Assays Obscure Breast Cancer Subtype Diversity

By LabMedica International staff writers
Posted on 10 May 2015
Print article
Image: Estrogen receptor (ER)-positive breast cancer surgical pathology specimen stained for ER by immunohistochemistry. Most of the cancer cell nuclei stain dark brown, strongly positive for ER (Photo courtesy of Ronald S. Weinstein, MD).
Image: Estrogen receptor (ER)-positive breast cancer surgical pathology specimen stained for ER by immunohistochemistry. Most of the cancer cell nuclei stain dark brown, strongly positive for ER (Photo courtesy of Ronald S. Weinstein, MD).
The classification systems that categorize breast cancers based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression levels may obscure the heterogeneity of other key tumor features.

Some breast tumors that share a single clinical label, such as triple-negative breast cancer (TNBC), may in fact represent a diverse collection of molecular subtypes and many breast cancer treatment decisions hinge on whether tumors test positive or negative for ER, PR, and/or HER2, yet the criteria for interpreting a test result can vary.

Scientists at the University of North Carolina (Chapel Hill, NC, USA) and a large team of international collaborators studied 1,557 breast tumor samples that were tested for ER, PR, and HER2 expression by standard clinical assays. The same tumors were also tested for their molecular features and classified into one of five molecular subtypes: Luminal A, Luminal B, HER2-Enriched, Basal-like, and Normal-like.

These breast tumors were centrally reviewed in three different trials for quantitative ER, PR, and HER2 expression by immunohistochemistry (IHC) stain and by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), with intrinsic subtyping by the gene set PAM50 RT-qPCR assay. HER2 expression was determined by IHC, and the amplification ratio was determined by fluorescent in situ hybridization (FISH) and also by chromogenic in situ hybridization (CISH).

Among TNBCs with less than 1% hormone receptor (HR) staining, the most common molecular subtype was Basal-like (73%), followed by HER2-Enriched (17%). By comparison, TNBC tumors with borderline HR staining had a much wider mix of molecular subtypes, including Luminal A/B (44%), HER2-Enriched (31%), and Basal-like (18%). Among the 228 basal-like tumors, 93.4% (213 of 228) had less than 1% ER or PR staining by IHC.

Lisa A. Carey, MD, the senior author of the study, said, “Including tumors with borderline HR staining in the definition of triple-negative breast cancer significantly diminished the proportion of Basal-like molecular subtypes. The optimal threshold for enriching for Basal-like breast cancer is less than 1% for either hormone receptor. Our findings show that borderline HR-expressing tumors are heterogeneous and do not fit well into distinct molecular categories. This raises the question of whether ‘borderline’ HR staining should instead be considered ‘indeterminate’ and requires additional assays to clarify the underlying biology.” The study was published on April 23, 2015, in the journal the Oncologist.

Related Links:

University of North Carolina 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.