We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Analysis of Isotope Imbalance May Aid Liver Cancer Diagnosis

By LabMedica International staff writers
Posted on 01 Mar 2015
Print article
Image: Micrograph of hepatocellular carcinoma taken from a liver biopsy and colored with trichrome stain (Photo courtesy of Wikimedia Commons).
Image: Micrograph of hepatocellular carcinoma taken from a liver biopsy and colored with trichrome stain (Photo courtesy of Wikimedia Commons).
A novel approach for diagnosing liver cancer (hepatocellular carcinoma) is based on analytical methods frequently used in the earth sciences.

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause). Compared to other cancers, HCC is a rare tumor in the United States. In countries where hepatitis is not endemic, most malignant cancers in the liver are not primary HCC but metastasis of cancer from elsewhere in the body.

Investigators at the École Normale Supérieure de Lyon (France) analyzed the ratios of stable copper (Cu) and sulfur (S) isotopes in liver cancer patients. This study was a hi-tech look into observations dating from as far back as 1928 indicating that the hypoxic tumor environment altered the normal metabolism of elements such as copper and sulfur as well as the redox state of the metals, impacting their ability to bind to ligands.

Specifically, the investigators used the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with (HCC) as a tool to explore cancer-driven copper and sulfur imbalances.

They reported that copper was 63Cu-enriched by about 0.4% and sulfur was 32S-enriched by about 1.5% in the blood of patients compared with that of control subjects. HCC patients had more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden was not in favor of a dietary origin but rather suggested a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect was similar in red blood cells and serum of HCC patients, implying that sulfur fractionation was systemic. The 32S-enrichment of sulfur in the blood of HCC patients was compatible with the notion that sulfur partly originated from tumor-derived sulfides.

First author Dr. Vincent Balter, professor of geology at the École Normale Supérieure de Lyon, said, "This indicates that the blood 65Cu levels would decrease as a function of the severity of the cancer, which would be of interest for the estimation of tumor burden. The enrichment of blood with the 32S isotope may provide new biomarkers for cancer detection and monitoring."

The study was published in the January 27, 2015, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

École Normale Supérieure de Lyon


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.