We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Potential New Tool for Cervical Cancer Detection

By LabMedica International staff writers
Posted on 29 Dec 2014
Print article
Image: Comparison of between normal cervical tissue (top), tissue lesion (second row), photographic image (third row) and corresponding DMAP images (fourth row) (Photo courtesy of Biomedical Optics Express).
Image: Comparison of between normal cervical tissue (top), tissue lesion (second row), photographic image (third row) and corresponding DMAP images (fourth row) (Photo courtesy of Biomedical Optics Express).
Photoacoustic imaging (PAI) has the potential to be a quicker, cheaper, and less-invasive method for detecting and staging cervical cancer (CC), according to a new study.

Researchers at Central South University (Changsha, China) conducted 30 in vitro experiments with tissue samples representing different cancer stages, using PAI, a hybrid optical imaging technique that combines the high contrast of pure optical imaging with the high spatial resolution and the deep imaging depth of ultrasound. The technique involves short laser pulses, some of which are absorbed by the tissues and converted into heat, leading to rapid thermal expansion inside the tissues that produces ultrasonic waves. The generated waves are then detected by an ultrasonic sensor to form photoacoustic images of the tissues.

In each of the experiments, the researchers embedded one section of normal cervical tissue and one section of cervical lesion (from the same person) in a cylindrical phantom for simultaneous PAI. Part of each sample was also sent to histological evaluation for cross-PAI. By processing all of the imaging data, the researchers obtained a depth maximum amplitude projection (DMAP) image, which shows the PAI contrast of the sample. The researchers used hemoglobin as the contrast agent, since PAI is highly sensitive to abnormal angiogenesis, a hallmark of CC tumors.

The obtained DMAP images were analyzed to evaluate the extent of the angiogenesis for different clinical stages of CC. The results showed stronger absorption from the cervical lesions, relative to that of normal tissue. The difference in mean optical absorption (MOA) between normal tissue and CC lesions showed a statistical significance, and the MOA of the CC lesions were closely related to the severity of CC. The study was published in the January 2015 issue of Biomedical Optics Express.

“Due to the higher hemoglobin concentration, abnormal angiogenesis has higher optical absorptions in certain wavelengths than normal tissues,” said lead author assistant professor of biomedical engineering Jiaying Xiao, PhD. “The technique is noninvasive and can detect the lesions in the cervical canal, an area conventional methods fail to observe. The photoacoustic imaging can also evaluate the invasion depth of cervical lesions more effectively.”

In current clinical practice, the diagnosis of CC is mainly through the cervical screening followed by a necessary biopsy, but this method is labor consuming and expensive, and can only detect superficial lesions around the external cervical orifice. In contrast, PAI is sensitive to the abnormal angiogenesis deep in the biological tissue, and may be capable for the intact scanning both around the external orifice and in cervical canal.

Related Links:

Central South University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.