We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Familial Glioma Linked to Mutation in Telomere Protection Gene

By LabMedica International staff writers
Posted on 14 Dec 2014
Print article
Image: Two MRI images of low-grade brain glioma in a 28-year-old male (Photo courtesy of Wikimedia Commons).
Image: Two MRI images of low-grade brain glioma in a 28-year-old male (Photo courtesy of Wikimedia Commons).
Mutations in the POT1 (protection of telomeres protein 1) gene have been linked to the development of brain tumors in families with two or more members suffering from glioma, the most common form of primary brain cancer.

The POT1 gene is a member of the shelterin complex and encodes a nuclear protein involved in telomere maintenance. Specifically, this protein functions as a member of a multiprotein complex that binds to the TTAGGG repeats of telomeres, regulating telomere length and protecting chromosome ends from illegitimate recombination, catastrophic chromosome instability, and abnormal chromosome segregation.

A recent paper described a study that was conducted under the auspices of the Gliogene Consortium (Houston, TX, USA), a collaborative group of familial brain tumor researchers from the United States, the United Kingdom, Sweden, Denmark, and Israel. Between 2007 and 2011 The Gliogene Consortium recruited 435 families in which glioma occurred in multiple family members. Overall, it has been estimated that approximately 5% of brain tumors are familial.

Whole exome sequencing (which determines the DNA sequence of the exons, or protein-coding regions, of tens of thousands of genes simultaneously) was performed on samples taken from 90 individuals with glioma from this group.

Results identified two families presenting with mutations in POT1 that were shared by both affected individuals in each family. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1. In one family, six members carried a POT1 mutation that is rarely found in normal populations, and among them three developed glioma. In another family, six individuals carried a different POT1 gene mutation and two developed glioma.

At the molecular level the POT1 mutations were predicted to impact DNA and TPP1 binding. TPP1 normally interacts with POT1 and regulates its function. When telomeres are to be lengthened, TPP1 is a central factor in recruiting telomerase to telomeres.

"I have been researching familial glioma for nearly 30 years, and this study is really the first time we have had a hit when it comes to identifying a gene that is potentially associated with predisposition to the disease," said senior author Dr. Melissa Bondy, professor of medicine at Baylor College of Medicine (Houston, TX, USA) and principal investigator of the Gliogene Consortium.

"It is widely thought amongst the clinical community that there is no association between family history and development of glioma. Because we know very little about the contributing genetic factors, when cases occur in two or more family members, it is viewed as coincidental," said Dr. Bondy. "By understanding more about the genetic link, we hope that one day we can improve treatments and preventive strategies for those with a family history of glioma."

The study will be published in the January 2015 online issue of the Journal of the [US] National Cancer Institute.

Related Links:
Gliogene Consortium
Baylor College of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.