We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Device Rapidly Diagnoses Prostate Cancer

By LabMedica International staff writers
Posted on 18 Nov 2014
Print article
Image: The prototype of a diagnostic device that determines whether the prostate tissue sample is benign or malignant in 90 seconds (Photo courtesy of Fraunhofer IKTS).
Image: The prototype of a diagnostic device that determines whether the prostate tissue sample is benign or malignant in 90 seconds (Photo courtesy of Fraunhofer IKTS).
A new device facilitates the diagnosis of prostate cancer for doctors distinguishing between benign and malignant prostate tissue and through a visual analysis, the device can reliably determine if it is carcinoma within a minute-and-a-half.

Presently to make a definitive diagnosis doctors take a biopsy of prostate tissue from the patient. In doing so, they insert a small needle into the prostate, using ultrasound images to assist with navigation. From the sample taken in this way, laboratory staff laboriously makes histological slides. The tissue sections are forwarded to a pathologist, who examines them under the microscope and even for experienced physicians, it is often difficult to distinguish between benign and malignant tissue.

Scientists at the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS; Dresden, Germany) developed an optical diagnostic device to distinguish benign prostate tissue from neoplasms. According to the inventors, the physician places the removed tissue sample on a base plate, slides it into the machine, presses a button and within one-and-a-half minutes, receives a reliable indication of whether the tissue in the sample is benign or malignant. Since the sample does not require a long preparation time and can be pushed directly into the device and analyzed after it has been taken, the patient does not have to wait for days after the biopsy in order to know the outcome. The doctor receives the results immediately and can talk with the patient much sooner about the next steps to take.

The analyses are based on the autofluorescence that human tissue emits. There are fluorophores in every human body. These molecules are illuminated for a very short time when certain light falls on them. If the doctor sets the removed tissue in the device, starts the measurement, emits a dosage of laser pulse and excites the fluorophores, then the laser pulse stimulates the fluorescent molecules in the tissue to release light. The way in which this fluorescence radiation decreases differs between benign and malignant tissue. The scientists have been able to determine a clear threshold for this different behavior: If the value of the tissue sample exceeds the threshold value, carcinoma is present.

The optical diagnostic device has already completed its first two clinical studies, and the third study is currently underway. A prototype is currently available. The scientists presented the 53 × 60 × 43 centimeter prototype at the COMPAMED trade fair held November 12–14, 2014, in Düsseldorf.

Related Links:

Fraunhofer Institute for Ceramic Technologies and Systems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.