We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Brain Tumor Chemotherapy Biomarkers Identified

By LabMedica International staff writers
Posted on 24 Jul 2014
Print article
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).
Cancer researchers have identified a new biomarker that they believe can predict whether glioblastoma multiformes (GBMs), the most common and aggressive type of malignant brain tumor, will be susceptible to chemotherapy.

Previous work had shown that the activity of the enzyme 6-methylguanine DNA methyltransferase (MGMT) was a critical determinant of how GBM cells would respond to the chemotherapeutic drug temozolomide (TMZ).

The therapeutic benefit of TMZ depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of TMZ, by expressing the protein O6-alkylguanine DNA alkyltransferase (AGT) encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene. In some tumors, epigenetic silencing of the MGMT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by TMZ. Conversely, the presence of AGT protein in brain tumors predicts poor response to TMZ and these patients receive little benefit from chemotherapy with this drug.

Investigators at the University of California, San Diego School of Medicine (USA) had already found that MGMT was partially regulated by the microRNA (miRNA) miR-181d and other miRNAs. In the current study they sought to identify these other MGMT regulatory miRNAs and to determine whether any one in particular was the key regulator.

Towards this end, they performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens.

The investigators identified 15 candidate miRNAs and characterized the top candidate, miR-603. They found that transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with an antibody specific for miR-603. MiR-603 transfection enhanced the TMZ sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually.

“Every patient diagnosed with glioblastoma is treated with a chemotherapy called temozolomide. About 15% of these patients derive long-lasting benefit,” said senior author Dr. Clark C. Chen, professor of neurosurgery at the University of California, San Diego School of Medicine. “We need to identify which patients benefit from temozolomide and which another type of treatment. All therapies involve risk and the possibility of side-effects. Patients should not undergo therapies if there is no likelihood of benefit. We showed that a signature of the MGMT-regulating microRNAs predicted temozolomide response in a cohort of glioblastoma patients. Validation of these results should lead to diagnostic tools to enable us to determine which patients will benefit most from temozolomide therapy.”

The study was published in the June 30, 2014, issue of the journal Oncotarget.


Related Links:
University of California, San Diego School of Medicine



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.