We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Quantization of Leukocyte Subsets with DNA Methylation Microarrays

By LabMedica International staff writers
Posted on 20 Mar 2014
Print article
Image: A new technique distinguishes cell types in blood by looking at signature degrees of methylation in DNA. Yellow represents no methylation, blue full methylation (Photo courtesy of Brown University).
Image: A new technique distinguishes cell types in blood by looking at signature degrees of methylation in DNA. Yellow represents no methylation, blue full methylation (Photo courtesy of Brown University).
A novel microarray-based technique uses DNA methylation to simultaneously quantify multiple leukocyte subsets, enabling the investigation of immune modulations in both fresh blood samples and archived samples that previously could not be used for such analysis.

Cell lineage-specific DNA methylation patterns distinguish normal human leukocyte subsets and can be used to detect and quantify these subsets in peripheral blood. However, all the current methods for counting immune cells in a blood sample require whole cells, with the "gold standard" methods being: manual five-part differential count, CBC (complete blood count) with automated five-part differential and fluorescence-activated cell sorting (FACS).

Investigators at Brown University (Providence, Rhode Island, USA) have developed an approach using DNA methylation to simultaneously quantify multiple leukocyte subsets without the need for counting whole cells.

They used the Illumina (San Diego, CA, USA) Infinium HumanMethylation and VeraCode GoldenGate Methylation microarray assays to identify cell lineage-specific DNA methylation signatures that distinguished among human T-cells, B-cells, NK cells, monocytes, eosinophils, basophils and neutrophils. They then employed a bioinformatics-based approach to quantify these cell types in complex mixtures, including whole blood, using DNA methylation signatures at as few as 20 CpG (cytosine and the guanine connected by a phosphodiester bond) loci.

Applying this DNA methylation-based approach to quantify the cellular components in 80 human whole blood samples, they verified its accuracy by direct comparison to gold standard immune quantification methods that utilized physical, optical, and proteomic characteristics of the cells. They also demonstrated that the approach was not affected by storage of blood samples, even under conditions prohibiting the use of gold standard methods.

“Every kind of cell has its own methylation signature,” said senior author Dr. Karl T. Kelsey, professor of epidemiology at Brown University. “Once you understand the unique and really immutable signature that directs the differentiation of the cell, then you can use that and you do not need the cell anymore.”

The study was published in the March 5, 2014, online edition of the journal Genome Biology.

Related Links:

Brown University
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.