We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Method Creates Megakaryocytes From Stem Cells For Transfusion

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: The Axiovert 40 fluorescent microscope (Photo courtesy of Zeiss).
Image: The Axiovert 40 fluorescent microscope (Photo courtesy of Zeiss).
The production of megakaryocytes (MKs), the precursors of blood platelet, from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Up to four components can be derived from donated blood: red cells, white cells, plasma and platelets.

Each component serves a different medical need, allowing several patients to benefit from a single unit of donation. Platelet transfusions are given to patients with life-threatening bleeding due to injury or surgery. They may also be given to patients having treatments for cancer or leukemia, or with blood disorders where they cannot make enough platelets of their own.

A large team of scientists led by those at the University of Cambridge and NHS Blood and Transplant (Cambridge, UK) developed an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: globin transcription factor 1(GATA1,) Friend leukemia integration 1 transcription factor (FLI1) and T-Cell Acute Lymphocytic Leukemia 1 (TAL1).

A multiplicity of methodologies were used that included human pluripotent stem cell (hPSC) culture, selecting transcription factor candidates, transcription factor cloning using recombinant lentiviral vectors, human pluripotent stem cell transduction, megakaryocyte forward programming and flow cytometry analyses were performed on a CyAn ADP analyzer (Beckman Coulter, Brea, CA, USA). Megakaryocyte colony forming assay, and immunofluorescence analysis and the latter were visualized on an Axiovert 40 fluorescent microscope (Zeiss, Cambridge, UK).

The forward programmed MKs proliferated and differentiated in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as one million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion.

The authors noted that critically, the forward programmed MKs (fopMKs) matured into platelet-producing cells that could be cryopreserved, maintained and amplified in vitro for over 90 days showing an average yield of 200,000 MKs per input hPSC. The study was published on April 7, 2016, in the journal Nature Communications.

Related Links:
University of Cambridge and NHS Blood and Transplant
Beckman Coulter
Zeiss

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.