We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Study Advances Blood Tests for Psychiatric and Neurological Disorders

By LabMedica International staff writers
Posted on 16 Feb 2024
Print article
Image: Researchers are making progress towards developing blood tests for psychiatric and neurological disorders (Photo courtesy of 123RF)
Image: Researchers are making progress towards developing blood tests for psychiatric and neurological disorders (Photo courtesy of 123RF)

The lack of non-invasive methods for monitoring brain status is a significant challenge in psychiatric care. Using genetic material from human blood and lab-grown brain cells, researchers have now made advances in developing a blood test to detect brain-related changes associated with postpartum depression and other psychiatric and neurological disorders.

The research by investigators at Johns Hopkins Medicine (Baltimore, MD, USA) focused on tracing brain cell-derived mRNAs in the bloodstream. These extracellular vesicles (EVs), which are tiny sacs containing genetic material, are crucial for cell communication and carry messenger RNA (mRNA) from the brain. This method allows for the detection of changes in gene activity within the brain. The team's interest in this area grew from an earlier study that found altered EV communication in pregnant women who developed postpartum depression after childbirth. The latest study used the human placenta as a model to identify 26 placental mRNAs in maternal blood during pregnancy, which disappear after birth. This discovery confirmed that mRNAs from specific tissues, including the brain, are present in EVs in the blood. Utilizing brain organoids derived from stem cells, the researchers demonstrated that EV mRNAs mirror changes within these brain tissues.

Through analysis of brain-specific mRNAs using the Human Protein Atlas and the Genotype-Tissue Expression Project, the researchers identified mRNAs linked to various brain functions and disorders, including mood disorders, schizophrenia, epilepsy, and substance abuse. They also pinpointed 13 brain-specific mRNAs associated with postpartum depression. The study compared mRNAs from cells and EVs in a brain organoid model, finding that while the levels differ, they are correlated. This correlation suggests that it is possible to infer changes in the brain based on EV mRNA levels in the blood. The ultimate aim is to create a simple blood test to detect mRNA level changes related to mental disorders, potentially allowing for early detection of psychiatric emergencies like suicidal behavior. By identifying patients at risk of a psychiatric episode, intervention and prevention of adverse outcomes could be possible. Future research will focus on developing similar tests for conditions like autism spectrum disorder using lab-grown brain samples.

“This is very exciting, because right now, there isn’t a blood marker for disorders affecting the brain,” said Lena Smirnova, Ph.D., an assistant professor at the Johns Hopkins Bloomberg School of Public Health. “Essentially, these conditions are diagnosed by clinical interviews between patients and providers.”

Related Links:
Johns Hopkins Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.