We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Blood Test Identifies Neuroendocrine Subtype of Advanced Prostate Cancer

By LabMedica International staff writers
Posted on 11 Jan 2024
Print article
Image: The blood test uses cell-free DNA methylation to distinguish neuroendocrine subtype of advanced prostate cancer (Photo courtesy of 123RF)
Image: The blood test uses cell-free DNA methylation to distinguish neuroendocrine subtype of advanced prostate cancer (Photo courtesy of 123RF)

Roughly 10-15% of individuals with metastatic castration-resistant prostate cancer (CRPC) eventually develop neuroendocrine prostate cancer (NEPC), a challenging cancer subtype. This transformation is marked by a change from androgen-dependent cancer cells to those that no longer respond to androgens. Diagnosing NEPC typically involves a biopsy from a metastatic tumor, but this can be uncertain due to timing issues and the heterogeneous nature of metastatic tumors. Now, researchers have developed a blood test that can reliably detect NEPC and differentiate it from CRPC-adenocarcinoma (CRPC-adeno).

In previous research, an international team of researchers from Dana-Farber Cancer Institute (Boston, MA, USA and the University of Trento (Trento, Italy) examined biopsy tissue samples to identify genetic and epigenetic shifts accompanying this shift from cancer cells that are dependent on hormones called androgens to cancer cells that no longer even recognize androgens. They discovered distinctive genome-wide epigenetic alterations, particularly in DNA methylation, that differentiate CRPC-adeno from NEPC. These changes can be identified in blood, as the body naturally releases cell fragments, including cell-free DNA (cfDNA), which carry these epigenetic markers. This insight led to the development of the NEMO (NEuroendocrine MOnitoring panel) blood test. NEMO examines cfDNA in blood plasma for specific DNA fragments and assesses their methylation levels. It reports two critical metrics: the tumor fraction (the ratio of tumor to normal DNA in the blood, indicating disease burden) and the tumor type (CRPC-adeno or NEPC), presented as a score on a spectrum to account for possible mixed cancer types.

NEMO was tested in various preclinical prostate cancer models and blood samples from patients with known prostate cancer subtypes, demonstrating high accuracy in subtype identification. In two clinical trials involving aggressive CRPC patients, NEMO’s tumor fraction estimates aligned with established disease burden measures, suggesting its potential in tracking treatment response, particularly valuable as standard measures like prostate-specific antigen levels become less reliable during the transition to NEPC. The test accurately identified NEPC patients and also pinpointed individuals showing early signs of transitioning to NEPC. The insights provided by the NEMO panel could guide clinicians in choosing targeted treatments and assist researchers in understanding the disease more deeply. Additionally, this testing method holds promise for application in other cancer types to differentiate between subtypes.

"As prostate cancer treatments get more effective, we expect the emergence of different types of treatment resistance like neuroendocrine prostate cancer that help them evade treatment," said Himisha Beltran, associate professor of medicine at Dana-Farber Cancer Institute. "We hope this blood test can be used by clinicians to determine if a patient is developing neuroendocrine prostate cancer."

Related Links:
Dana-Farber Cancer Institute
University of Trento

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.