We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Rapid Test Diagnoses Tropical Disease within Hours for Faster Antibiotics Treatment

By LabMedica International staff writers
Posted on 14 Mar 2024
Print article
Image: The new rapid test could save the lives of patients with melioidosis (Photo courtesy of 123RF)
Image: The new rapid test could save the lives of patients with melioidosis (Photo courtesy of 123RF)

Melioidosis, a neglected tropical disease, is believed to affect around 165,000 individuals globally each year, with approximately 89,000 succumbing to it. This illness is caused by the bacterium Burkholderia pseudomallei, which thrives in the soil and water of tropical and subtropical areas, gaining entry into humans through skin cuts, consumption, or inhalation. Diagnosing melioidosis poses challenges due to its varying symptoms ranging from localized infections and pneumonia to severe septicemia or prolonged chronic conditions. The disease's tendency to predominantly affect isolated rural communities contributes to its significant underreporting. Diagnosis traditionally depends on culturing bacterial specimens, a process extending over three to four days. Meanwhile, a large percentage of patients with melioidosis succumb to the disease, often within the initial 24 to 48 hours of hospital admission, while waiting for a diagnosis. Although no vaccine exists for melioidosis, it can be effectively managed with specific intravenous antibiotics if identified promptly. However, the current diagnostic delay leads to the initial administration of broad-spectrum antibiotics, unnecessarily extending treatment times and resource usage.

An international collaboration that included researchers from the Wellcome Sanger Institute (Cambridgeshire, UK) has led to the development of a rapid diagnostic test capable of identifying melioidosis within hours, significantly quicker than traditional methods. This advancement allows for the faster administration of appropriate antibiotics. Utilizing CRISPR technology, this new test identifies a Burkholderia pseudomallei-specific genetic marker with 93% sensitivity, offering a promise of higher survival rates through a rapid, globally applicable diagnostic solution. Developing this test involved the analysis of over 3,000 B. pseudomallei genomes, predominantly sequenced at the Sanger Institute, to identify a unique genetic target.

The designed test, CRISPR-BP34, enhances the DNA of the target bacterium through a recombinase polymerase amplification reaction, with a subsequent CRISPR reaction ensuring specificity. The presence of melioidosis is confirmed by a simple lateral flow 'dipstick' method. To validate this test, the team examined clinical samples from 114 melioidosis patients and 216 non-affected individuals from northeast Thailand, a melioidosis hotspot. The CRISPR-BP34 test demonstrated a 93% sensitivity rate, surpassing the 66.7% sensitivity of conventional bacterial culture techniques, and delivered results within four hours for urine, pus, and sputum samples, and within a day for blood samples, markedly faster than the current methods. This new rapid diagnostic test not only promises quicker diagnosis and treatment for melioidosis patients but also aims to conserve medical resources and reduce hospital stays by preventing the indiscriminate use of broad-spectrum antibiotics. The team is planning randomized clinical trials to further validate the test's effectiveness in hospitals and is exploring the influence of human genetics on melioidosis susceptibility and immune response.

“This research is a testament to international collaboration and how the application of genomics at scale leads to clinical intervention,” said Professor Nick Thomson, Head of Parasites and Microbes at the Wellcome Sanger Institute. “Using a genetic target mined from a bank of thousands of bacterial genomes, the team was able to produce an incredibly sensitive test that is specific to the bacterium behind melioidosis. I look forward to seeing the clinical impacts of this research.”

Related Links:
Wellcome Sanger Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.