We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

PROMEGA

Promega has a portfolio of more than 3,000 products covering the fields of genomics, protein analysis and expression,... read more Featured Products: More products

Download Mobile App




Genomic Sequencing Illuminates Recent Shigellosis Outbreaks

By LabMedica International staff writers
Posted on 12 Jan 2017
Print article
Image: The Wizard SV Genomic DNA purification system (Photo courtesy of Promega).
Image: The Wizard SV Genomic DNA purification system (Photo courtesy of Promega).
Shigellosis is an acute gastrointestinal infection caused by bacteria belonging to the genus Shigella. Shigellosis is the third most common enteric bacterial infection in the USA with 500,000 infections, 6,000 hospitalizations, and 70 deaths each year.

There are four Shigella species that cause shigellosis: Shigella dysenteriae, considered to be the most virulent species due to its ability to produce a potent cytotoxin called Shiga toxin, while S. flexneri, S. boydii, and S. sonnei generally do not produce Shiga toxin and, therefore, cause mild forms of shigellosis.

Scientists at the California Department of Public Health (Richmond, CA, USA) and their colleagues identified 68 Shigella sonnei human isolates from California (CA); 57 outbreak-related isolates from 2014 to 2015 and 11 archival isolates from 1980 to 2008, which were serotyped by standard methods. Polymerase chain reaction (PCR) detection of the stx1 and stx2 genes and Vero cell neutralization assay for confirmation of Shiga toxin production were performed.

DNA was extracted with a Wizard Genomic DNA kit (Promega, Madison, WI, USA). Sequencing libraries were constructed using the Nextera XT (Illumina Inc, San Diego, CA, USA) library preparation kit. Sequencing was performed using 2 × 300-bp sequencing chemistry on an Illumina MiSeq sequencer. High-quality single nucleotide polymorphism (hqSNP)-based phylogeny was used to determine genetic relationships between the local California (CA) S. sonnei populations and their connection to global S. sonnei strains.

The team found two clusters in these outbreaks: one that primarily struck San Diego and the San Joaquin Valley and one more localized to the San Francisco Bay Area. The San Diego/San Joaquin strain has been in California since at least 2008. However, some of the isolates had been infected with a bacteriophage (a virus that attacks bacteria) that carried a Shiga toxin (stx) gene found in the more virulent S. flexneri and S. dysenteriae. By contrast, the strain that hit San Francisco lacked stx but contained genes that gave it resistance to the broad-spectrum fluoroquinolone class of antibiotics. The fluoroquinolone-resistance genes were similar to ones found in strains from Southeast Asia.

James P Watt, MD, MPH, the Chief of Division of Communicable Disease Control, said, “Shigella sonnei bacteria normally cause a less severe disease and are not known to produce Shiga toxin. The toxin gene was most likely acquired by Shigella sonnei via genetic exchanges with Escherichia coli and other Shigella species. Discovering a functional toxin gene was concerning in this large outbreak. Finding this gene raises concerns that illness due to Shigella sonnei could become more severe in the future.” The study was published on December 21, 2016, in the journal mSphere.

Related Links
California Department of Public Health
Promega
Illumina

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.