We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Students Developing Portable Device to Quickly Detect Bacterial Infections

By LabMedica International staff writers
Posted on 08 Nov 2016
Print article
Image: A new device capable of quickly diagnosing bacterial infections could help doctors improve the way they prescribe treatment for patients (Photo courtesy of the University of Sheffield).
Image: A new device capable of quickly diagnosing bacterial infections could help doctors improve the way they prescribe treatment for patients (Photo courtesy of the University of Sheffield).
The new diagnostic tool, which uses genetically engineered bacteria to detect bacterial infections in blood samples, would lead to more informed decisions that would reduce the number of patients with viral infections being prescribed antibiotics, thus reducing unnecessary treatments and helping to tackle antibiotic resistance.

The device is being developed by the University of Sheffield’s (Sheffield, UK) team of students who participated in this year’s “International Genetically Engineered Machine Competition” – iGEM 2016 (October 27-31; Boston, MA, USA) in the field of synthetic biology. The team consists of students from a range of science, engineering, and medicine disciplines.

They hope the device could be used after GP surgeries to potentially help prevent complications from sepsis, or in walk-in clinics to enable patients with flu-like symptoms to have a small blood sample tested and be promptly told whether they have a bacterial or non-bacterial infection and be treated accordingly.

The tool distinguishes between bacterial and viral infection by detecting levels of the protein lipocalin-2, which is produced in high levels by immune system cells in response to bacterial infections. Bacteria produce siderophores that scavenge iron (as Fe3+) from host blood. In response, the immune system produces lipocalin-2, which sequesters siderophores. Lipocalin-2 levels can increase 5-fold during a bacterial infection. The device detects lipocalin-2 levels using genetically engineered bacteria that report a fluorescent signal inversely correlated to lipocalin-2 levels (via repression of GFP, the fluorescent reporter protein).

Therefore, patient blood with bacterial infection results in a weak GFP signal, in contrast to a strong signal without bacterial infection. The portable device, which includes a shoebox size fluorometer, potentially has the capability of rapidly determining the presence of any bacterial infection.

“Antibiotic resistance is a huge problem and this is why we chose to base our project on it,” said Saylee Jangam, a Sheffield student on the iGEM team, “We may not be able to reverse it, but with our device, we could potentially slow it down. What’s even more interesting is that we are using genetically engineered bacteria to detect the presence of bacterial infections in blood – that’s right – using bacteria to detect bacteria.”

Related Links:
University of Sheffield

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.