We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Fatal Fungal Infection Has Unique Growth Patterns

By LabMedica International staff writers
Posted on 08 Sep 2016
Print article
Image: A microscopic appearance of non-aggregate-forming isolates (A) and aggregate-forming isolates (B) of Candida auris in phosphate buffered saline suspensions (Photo courtesy of Public Health England).
Image: A microscopic appearance of non-aggregate-forming isolates (A) and aggregate-forming isolates (B) of Candida auris in phosphate buffered saline suspensions (Photo courtesy of Public Health England).
The multidrug-resistant yeast Candida auris, which has caused fatal infections in some hospitalized patients, has at least two different growth patterns and some of its strains are as capable of causing disease as the most invasive type of yeast called Candida albicans.

Normally, a yeast copies itself and divides during growth, but the C. auris samples differ in their growth characteristics in the laboratory, with a proportion failing to separate after budding, resulting in the formation of large clumps of cells that could not be physically disrupted.

Mycology specialists at the Public Health England Mycology Reference Laboratory (Bristol, UK) characterized 12 C. auris isolates by ribosomal DNA (rDNA) gene sequencing targeting the 28S rRNA or by internal transcribed spacer 1 (ITS1) regions and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis or by a combination of the two methods.

The scientists compared the pathogenicity, or disease-causing potential, of the C. auris samples taken from patients treated at six National Health Service hospitals in England with samples of other disease-causing Candida species. To do so, they injected young wax moth larvae (called Galleria mellonella, an insect model used to study human infection) with the assorted Candida samples to measure progression of disease. The investigators also found strain-specific differences in the behavior of C. auris, with the clumped strains being less capable of causing disease than the ones that did not clump. The strains that did not clump were as capable of causing disease as another type of Candida called C. albicans, which is currently believed to have the most disease-causing potential in the Candida family.

Elizabeth Johnson, PhD, director of the National Mycology Reference Laboratory and co-author of the study, said, “Despite receiving considerable attention since its first description, little is known concerning the disease-causing potential of this emerging fungal pathogen. We were surprised to find two very different growth forms of C. auris depending on the strain. We were also surprised by the virulence of this species because in most other types of Candida, the ability to cause disease relates to the organism's ability to form hyphae (fine, branching tube-like structures). C. auris is not able to form these hyphae in the laboratory or in the insect infection model, so we would have predicted reduced ability to cause disease.” The study was published on August 18, 2016, in the journal mSphere.

Related Links:
Public Health England Mycology Reference Laboratory

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.