We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Protein Microarray Detects Antibodies in Melioidosis Patients

By LabMedica International staff writers
Posted on 03 Aug 2016
Print article
Image: A colored-enhanced scanning electron micrograph (SEM) of Burkholderia pseudomallei. These motile bacteria cause melioidosis, a tropical disease spread through contaminated water and soil (Photo courtesy of Eye of Science).
Image: A colored-enhanced scanning electron micrograph (SEM) of Burkholderia pseudomallei. These motile bacteria cause melioidosis, a tropical disease spread through contaminated water and soil (Photo courtesy of Eye of Science).
The environmental bacterium Burkholderia pseudomallei is the cause of the infectious disease melioidosis with a high case-fatality rate in tropical and subtropical regions. Direct pathogen detection can be difficult, and therefore an indirect serological test, which might aid early diagnosis is desirable.

The current tests for antibodies against B. pseudomallei, including the reference indirect hemagglutination assay (IHA), lack sensitivity, specificity and standardization and consequently, serological tests currently do not play a role in the diagnosis of melioidosis in endemic areas. A standardized, easy-to-perform clinical laboratory test for sensitive multiplex detection of antibodies against B. pseudomallei is still lacking.

An international team of scientists led by those at the Medical University of Graz (Austria) analyzed 196 sera and plasmas from melioidosis patients from northeast Thailand and 210 negative controls from melioidosis-endemic and non-endemic regions. They developed and validated a protein microarray, which can be used in a standard 96-well format. The array contains 20 recombinant and purified B. pseudomallei proteins, previously identified as serodiagnostic candidates in melioidosis.

Antibody detection using the B.pseudom.01-Array was performed and after processing the protein arrays were read out by the ArrayMate (Alere Technologies, Jena, Germany) and the data were analyzed. Spot intensities of at least 0.3 were defined as a specific antibody response to the respective antigens. The recognition of at least two different antigens per serum or plasma with signal intensities above 0.3 was considered melioidosis positive.

The protein array clearly discriminated between sera from melioidosis patients and controls with a specificity of 97%. Importantly, the array showed a higher sensitivity than did the indirect hemagglutination assay (IHA) in melioidosis patients upon admission (cut-off IHA titer equal to or greater than 1:160: IHA 57.3%, protein array: 86.7%). Testing of sera from single patients at 0, 12 and 52 weeks post-admission revealed that protein antigens induce either a short- or long-term antibody response.

The authors concluded that their protein array provides a standardized, rapid, easy-to-perform test for the detection of B. pseudomallei-specific antibody patterns. Thus, this system has the potential to improve the serodiagnosis of melioidosis in clinical settings. Moreover, the high-throughput assay might be useful for the detection of anti-B. pseudomallei antibodies in epidemiological studies. Further studies are needed to elucidate the clinical and diagnostic significance of the different antibody kinetics observed during melioidosis. The study was published on July 18, 2016, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Medical University of Graz
Alere Technologies
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.