We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

BMG LABTECH

BMG LABTECH is a manufacturer of a wide range of dedicated and multi-mode microplate instruments ranging from single-... read more Featured Products: More products

Download Mobile App




New Assay Improves Detection Of Deadly Prion Diseases

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: The FLUOstar Omega microplate reader (Photo courtesy of BMG Labtech).
Image: The FLUOstar Omega microplate reader (Photo courtesy of BMG Labtech).
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a family of rare progressive, neurodegenerative illnesses that affect both humans and animals and TSE surveillance is important for public health and food safety.

Because TSEs have the potential of crossing from animals to humans, as seen with the spread of mad cow disease, or bovine spongiform encephalopathy (BSE), an advanced assay that offers better sensitivity than currently available tests for detecting a prion disease is essential.

Scientists at the Lethbridge Laboratory (AB, Canada) studied elk brains from animals suffering from chronic wasting disease, a prion disease that affects cervids, which are hoofed ruminant mammals in the deer family, as the model for the assay. Surveillance programs rely on highly sensitive diagnostic methods to detect infections early. Addressing the need to define steadfast analytical performance criteria for prion amyloid seeding assays (ASAs), they developed a method to measure prion protein conversion time (from normal cellular form to prion form) by a combination of statistical analyses to obtain a prion-detecting ASA with a known degree of confidence.

The timed prion seeding assay (tASA) is an in vitro method that mimics the conjectured mechanism of prion propagation in vivo. It is a conversion assay that uses recombinant prion-related protein as a substrate and detects conversion via changes in fluorescence. The team described time specifications for the assay to help avoid false-positive results (30 hours) or false-negative results in weakly positive samples (48 hours), as well as the number of replications necessary for adequate sensitivity (two to 12). The assay is analyzed on a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany).

They compared the sensitivity of the new assay technique, the tASA to other currently available tests: two bioassays in laboratory rodents and three commercially available TSE rapid tests. The three regulatory-approved TSE rapid test platforms were the Prionics Check WESTERN (Thermo Fisher Scientific, Waltham, MA, USA); the Bio-Rad TeSeE enzyme-linked immunosorbent assay (ELISA, Hercules, CA, USA); and the IDEXX HerdChek CWD enzyme-linked immunoassay (EIA, IDEXX, Westbrook, ME, USA).

The investigators were able to define clear cut-off criteria, allowing determination of TSE-positive and TSE-negative states. Unlike TSE rapid tests, ASAs also have the potential to detect and measure TSE infection in blood, saliva, or urine. This would offer clinical advantages, such as the ability to sample blood instead of relying on more invasive tissue biopsy and to screen blood donations for contamination.

John G. Gray, MS, the lead author of the study said, “We found that the tASA was at least as sensitive as two rodent bioassays and up to 16 times more sensitive than three different TSE rapid tests. We believe this methodology represents the future for prion diagnostics, especially concerning human health, for example in screening blood donations.” The study will be published on April 8, 2016, in The Journal of Molecular Diagnostics.

Related Links:
Lethbridge Laboratory
BMG Labtech
Thermo Fisher Scientific
Bio-Rad Laboratories
IDEXX
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.