We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microchip Device for One Hour Antibiotic Resistance Testing

By LabMedica International staff writers
Posted on 08 Jun 2015
Print article
Image: Schematic of the antibiotic susceptibility testing device. Bacteria are cultured in miniature chambers, each of which contains a filter for bacterial capture and electrodes for readout of bacterial metabolism (Photo courtesy of the University of Toronto).
Image: Schematic of the antibiotic susceptibility testing device. Bacteria are cultured in miniature chambers, each of which contains a filter for bacterial capture and electrodes for readout of bacterial metabolism (Photo courtesy of the University of Toronto).
A novel electrochemical approach – designed to replace growth or fluorescent tests for drug resistance – can determine within one hour whether a culture of bacteria is susceptible to a particular antibiotic.

At present, the rapid determination of antibiotic susceptibility is hindered by the requirement that, in existing devices, bacteria must be pre-cultured for two to three days to reach detectable levels.

To break this bottleneck, investigators at the University of Toronto (Canada) designed a "lab-on-chip" device containing a series of minute flow-through wells patterned onto a glass chip. Each well has the capacity for only two nanoliters of growth medium and has a filter composed of microbeads at the bottom. The bacterial culture is passed through the well together with the antibiotic being tested, and the organisms are trapped by the filter at the bottom of the well. The bacteria accumulate in the wells, where they remain trapped with the antibiotic and the signal molecule resazurin.

Viable bacteria metabolize resazurin into resorufin, changing its electrochemical signature. If the bacteria are killed by the antibiotic, they stop metabolizing resazurin, and the electrochemical signature of the sample does not change. If they are antibiotic-resistant, they continue to metabolize resazurin into resorufin, altering its electrochemical signature. Electrodes built directly into the chip detect this change,

This electrochemical phenotyping approach was shown to be effective with clinically-relevant levels of bacteria and provided results comparable to culture-based analysis. Results, however, were delivered on a much faster timescale, with resistance profiles available after a single hour of incubation.

"Guessing can lead to resistance to these broad-spectrum antibiotics, and in the case of serious infections, to much worse outcomes for the patient," said first author Justin Besant, a graduate research student at the University of Toronto. "We wanted to determine whether bacteria are susceptible to a particular antibiotic, on a timescale of hours, not days. We have a lot of bacteria in a very small space, so our effective starting concentration is much higher, and as the bacteria multiply and convert the resazurin molecule, it is effectively stuck in this nanoliter droplet—it cannot diffuse away into the solution, so it can accumulate more rapidly to detectable levels."

"The electronics for our electrochemical readout can easily fit in a very small benchtop instrument, and this is something you could see in a doctor's office, for example," said Justin Besant. "The next step would be to create a device that would allow you to test many different antibiotics at many different concentrations, but we are not there yet."

The microchip device for assessing antibiotic resistance was described in the May 13, 2015, online edition of the journal Lab on a Chip.

Related Links:

University of Toronto 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.