Features | Partner Sites | Information | LinkXpress
Sign In

Genome Sequencing of MRSA Infection Predicts Disease Severity

By Labmedica International staff writers
Posted on 24 Apr 2014
Image: The Genome Analyzer IIx (Photo courtesy of Illumina).
Image: The Genome Analyzer IIx (Photo courtesy of Illumina).
Image: The highly toxic methicillin-resistant Staphylococcus aureus (MRSA) strain (top) and less toxic strain (bottom) cultured on a blood agar plate (Photo courtesy of Ruth Massey).
Image: The highly toxic methicillin-resistant Staphylococcus aureus (MRSA) strain (top) and less toxic strain (bottom) cultured on a blood agar plate (Photo courtesy of Ruth Massey).
Bacterial pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), cause disease in part due to toxicity, or the bacterium's ability to damage a host's tissue.

The spread of the antibiotic-resistant pathogen remains a concerning public health problem, especially among doctors trying to determine appropriate treatment options for infected patients.

Microbiologists at the University of Bath (UK) and a team of international scientists used whole genome sequences from 90 MRSA isolates to identify over 100 genetic loci associated with toxicity. Bacterial adhesion to human fibronectin and fibrinogen was assessed and adherent bacteria were calculated by using the crystal violet method and absorbance measured at A595 using a microtiter plate reader. The toxicity of individual isolates was assayed in three ways.

The identification of genetic variation in the clinical isolates was studied using unique index-tagged libraries created for each sample, and up to 12 separate libraries were sequenced in each of eight channels in the Genome Analyzer GAIIx cells (Illumina; San Diego, CA, USA) with 75-base paired-end reads.

The authors found that by using whole genome sequences from 90 MRSA isolates they were able to identify over 100 genetic loci associated with toxicity and despite belonging to the same ST239 clone, the isolates varied greatly in toxicity. Importantly, the highly toxic isolates shared a common genetic signature. By looking for this signature in the MRSA genome, the investigators were able to predict which isolates were the most toxic and thus more likely to cause severe disease when used to infect mice.

Ruth C. Massey, PhD, the lead author of the study, said, “As the cost and speed of genome sequencing decreases, it is becoming increasingly feasible to sequence the genome of an infecting organism. In a clinical setting, sequencing may be useful for deciding the course of MRSA treatment. For example, a clinician may treat a highly toxic infection more aggressively, including prescribing certain antibiotics known to reduce toxin expression. The patient also may be monitored more closely for complications and isolated from others to help control the spread of infection.” The study was published on April 9, 2014, in the journal Genome Research.

Related Links:

University of Bath



Clinical Chemistry

view channel
Image: UniCel DxC 800 Synchron Clinical Systems (Photo courtesy of Beckman Coulter).

Routine Blood Glucose Value Correlates with Diabetes Risk

Random glucose values obtained during routine blood tests are often overlooked, but could provide valuable insight into whether someone is at risk for having type 2 diabetes. Random Blood Glucose (RBG)... Read more

Genetic Tests

view channel
Image: Histopathology of tuberculoid leprosy in a skin section (Photo courtesy Dr. D.S. Ridley, Wellcome Images).

Genes Discovered Influence Risk of Developing Leprosy

Leprosy, a chronic dermatological and neurological disease, is caused by infection with Mycobacterium leprae, and its manifestation, progression and prognosis are strongly associated with the proficiency... Read more


view channel
Image: Plastic bag containing 0.5 to 0.7 liters of packed red blood cells in citrate, phosphate, dextrose, and adenine (CPDA) solution (Photo courtesy of Fresenius HemoCare).

Transfusion Protocols Compared After Cardiac Surgery

Unnecessary blood transfusions may increase healthcare costs both directly, because blood is an increasingly scarce and expensive resource, and indirectly due to the complications associated with transfusion.... Read more

Industry News

view channel

Sequencing-Based Testing Sector Already Highly Competitive

As next-generation sequencing (NGS) reaches the clinical laboratory, a new analysis by Kalorama Information (New York, NY, USA) finds that small reference laboratories as well as over 50 companies now offer sequencing-based testing through their own CLIA-certified laboratories, some of which offer a wide range of tests.... Read more


06 Apr 2015 - 08 Apr 2015
07 Apr 2015 - 09 Apr 2015
13 Apr 2015 - 16 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.