Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
GLOBETECH PUBLISHING

New Method Identifies Anthrax Bacteria Faster Than Current Approaches

By Labmedica International staff writers
Posted on 06 Mar 2014
Caption: The anthrax bacteria – Bacillus anthracis, transmitted mainly through inhalation or skin abrasions (Photo courtesy of University of Missouri).
Caption: The anthrax bacteria – Bacillus anthracis, transmitted mainly through inhalation or skin abrasions (Photo courtesy of University of Missouri).
A new method has been developed for rapid diagnostic detection and antibiotic susceptibility determination of the pathogenic Bacillus anthracis using a bioluminescent reporter phage.

Although anthrax is a treatable disease, positive patient prognosis is dependent on rapid diagnosis and therapy. A team at the University of Missouri (MU; Columbia, MO, USA) assessed a bioluminescent reporter phage, developed by David Schofield at Guild BioSciences (Charleston, SC, USA), for its value as a clinical diagnostic tool for Bacillus anthracis. The reporter phage based method, published in the Journal of Microbiological Methods (November 2013), detects live B. anthracis strains by transducing a bioluminescent phenotype. It was found to rule out false positives – displaying species specificity by its inability, or significantly reduced ability, to detect members of the closely related Bacillus cereus group and other common bacterial pathogens.

The method detects low levels of B. anthracis, at clinically relevant bacterial concentrations, within 5 hours. “Normally to identify whether an organism is present, you have to extract the material, culture it, and then pick colonies to examine that might turn out to be anthrax bacteria,” said Prof. George Stewart, PhD, medical bacteriologist. “Then you conduct chemical testing which takes some time—a minimum of 24 to 48 hours. Using this newly-identified method, we can reduce that time to about 5 hours.” The method also provides antibiotic susceptibility information that mirrors the CLSI method, except that data are obtained at least 5-fold faster.

In addition to saving lives, the new method could also save on high clean up and decontamination costs of bioterrorism attacks. These costs for the post-9/11 2001 anthrax letters attack totaled USD 3.2 million, according to a 2012 report. “In the years since the post-9/11 postal attacks, we haven’t had any bona fide anthrax attacks,” said Prof. Stewart; “That doesn’t mean that it’s not going to happen, we just have to be prepared.” Current methods take 1–3 days to produce definitive results for anthrax. The new detection method would potentially alert of a negative result 5 hours into clean-up efforts instead of 1–3 days into expensive decontamination.

Related Links:
University of Missouri at Columbia
Guild Biosciences


PURITAN MEDICAL
Sekisui Diagnostics
EUROIMMUN AG
comments powered by Disqus
Life Technologies

Channels

Pathology

view channel

New Approach Identifies Multiple Melanoma Drug Resistance Biomarkers

A recent paper described the use of liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for assessing melanoma biomarkers in the blood in order to determine the effectiveness of chemotherapy. Modern chemotherapeutic techniques based on treatment with multiple anticancer drugs require the identification... Read more

Lab Technology

view channel
Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).

Microfluidic Device Could Improve Biomarker Analyses

A new microfluidic device could offer a more reliable alternative for detecting biomarkers in patients facing such illnesses as cancer or malaria. The physical attributes of cells are important biomarkers... Read more

Industry News

view channel

IDT Acquires SURVEYOR Nuclease Product Line from Transgenomic

The SURVEYOR line is to be used by Integrated DNA Technologies (IDT; Coralville, IA, USA) primarily to support researchers performing mutation detection and potentially-clinical genome editing, and by Transgenomic, Inc. (Omaha, NE, USA) primarily to support diagnostic and other clinical applications. IDT, a world leader... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.